scholarly journals Applicability of non-destructive substitutes for leaf area in different stands of Norway spruce (Picea abies L. Karst.) focusing on traditional forest crown measures

2010 ◽  
Vol 260 (9) ◽  
pp. 1498-1506 ◽  
Author(s):  
Daniel Laubhann ◽  
Otto Eckmüllner ◽  
Hubert Sterba
2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Miroslav Kvíčala ◽  
Eva Lacková ◽  
Lenka Urbancová

Photosynthetic active pigments content (chlorophylls and carotenoids) in Norway spruce (Picea abies) needles was measured by absorption spectroscopy. Norway spruce was exposed to low and high photosynthetic active radiation and ambient and elevated CO2 concentration. It was investigated that combination of low photosynthetic active radiation and elevated concentration of CO2 resulted in stimulation of chlorophylls and carotenoids production. Combination of high photosynthetic active radiation and elevated CO2 concentration led to overall chlorophylls and carotenoids content decrease. Moreover, specific leaf area trend could be used as a potentially reliable indicator of plant stress response.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 570 ◽  
Author(s):  
Sterba ◽  
Dirnberger ◽  
Ritter

The growth effects of mixtures are generally assumed to be a result of canopy structure and crown plasticity. Thus, the distribution of leaf area at tree and stand level helps to explain these mixing effects. Therefore, we investigated the leaf area distribution in 12 stands with a continuum of proportions of European larch (Larix decidua Mill.) and Norway spruce (Picea abies (L.) Karst.). The stands were between 40 and 170 years old and located in the northern part of the Eastern Intermediate Alps in Austria at elevations between 900 and 1300 m a. s. l. A total of 200 sample trees were felled and the leaf area distribution within their crowns was evaluated. Fitting beta distributions to the individual empirical leaf area distributions, the parameters of the beta distributions were shown to depend on the leaf area of the individual trees and, for spruce, on the proportion of spruce in the stands. With the equations determined, the leaf area distribution of all trees in the stand, and thus its distribution in the stands, was calculated by species and in 2 m height classes. For the individual trees, we found that the leaf area distribution of larch is more symmetric, and its peak is located higher in the crown than it is the case for spruce. Furthermore, the leaf area distribution of both species becomes more peaked and skewed when the leaf area of the trees increases. The mixture only influences the leaf area distribution of spruce in such a way that the higher the spruce proportion of the stand, the higher the leaf area is located within the crown. At the stand level, a strong relationship was found between the proportion of spruce and the distance between the peaks of the leaf area distributions of larch and spruce.


1997 ◽  
Vol 101 (4) ◽  
pp. 764-769 ◽  
Author(s):  
Heike Stoermer ◽  
Bettina Seith ◽  
Ulrike Hanemann ◽  
Eckhard George ◽  
Heinz Rennenberg

Sign in / Sign up

Export Citation Format

Share Document