scholarly journals Is leaf area of Norway spruce (Picea abies L. Karst.) and European larch (Larix decidua Mill.) affected by mixture proportion and stand density?

2017 ◽  
Vol 74 (1) ◽  
Author(s):  
Gerald Dirnberger ◽  
Angela-Elisabeth Kumer ◽  
Eduard Schnur ◽  
Hubert Sterba
Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 570 ◽  
Author(s):  
Sterba ◽  
Dirnberger ◽  
Ritter

The growth effects of mixtures are generally assumed to be a result of canopy structure and crown plasticity. Thus, the distribution of leaf area at tree and stand level helps to explain these mixing effects. Therefore, we investigated the leaf area distribution in 12 stands with a continuum of proportions of European larch (Larix decidua Mill.) and Norway spruce (Picea abies (L.) Karst.). The stands were between 40 and 170 years old and located in the northern part of the Eastern Intermediate Alps in Austria at elevations between 900 and 1300 m a. s. l. A total of 200 sample trees were felled and the leaf area distribution within their crowns was evaluated. Fitting beta distributions to the individual empirical leaf area distributions, the parameters of the beta distributions were shown to depend on the leaf area of the individual trees and, for spruce, on the proportion of spruce in the stands. With the equations determined, the leaf area distribution of all trees in the stand, and thus its distribution in the stands, was calculated by species and in 2 m height classes. For the individual trees, we found that the leaf area distribution of larch is more symmetric, and its peak is located higher in the crown than it is the case for spruce. Furthermore, the leaf area distribution of both species becomes more peaked and skewed when the leaf area of the trees increases. The mixture only influences the leaf area distribution of spruce in such a way that the higher the spruce proportion of the stand, the higher the leaf area is located within the crown. At the stand level, a strong relationship was found between the proportion of spruce and the distance between the peaks of the leaf area distributions of larch and spruce.


2016 ◽  
Vol 13 (5) ◽  
pp. 1537-1552 ◽  
Author(s):  
Marta Petrillo ◽  
Paolo Cherubini ◽  
Giulia Fravolini ◽  
Marco Marchetti ◽  
Judith Ascher-Jenull ◽  
...  

Abstract. Due to the large size (e.g. sections of tree trunks) and highly heterogeneous spatial distribution of deadwood, the timescales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the chronosequence approach and the five-decay class system that is based on a macromorphological assessment. For the decay classes 1–3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) radiocarbon dating was used. In addition, density, cellulose, and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model, a regression approach, and the stage-based matrix model. In the decay classes 1–3, the ages of the CWD were similar and varied between 1 and 54 years for spruce and 3 and 40 years for larch, with no significant differences between the classes; classes 1–3 are therefore not indicative of deadwood age. This seems to be due to a time lag between the death of a standing tree and its contact with the soil. We found distinct tree-species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were estimated to be in the range 0.018 to 0.022 y−1 for spruce and to about 0.012 y−1 for larch. Snapshot sampling (chronosequences) may overestimate the age and mean residence time of CWD. No sampling bias was, however, detectable using the stage-based matrix model. Cellulose and lignin time trends could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 years for spruce and 50 years for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD. Consequently, the decay of Picea abies and Larix decidua is very low. Several uncertainties, however, remain: 14C dating of CWD from decay classes 4 and 5 and having a pre-bomb age is often difficult (large age range due to methodological constraints) and fall rates of both European larch and Norway spruce are missing.


2007 ◽  
Vol 85 (2) ◽  
pp. 132-140 ◽  
Author(s):  
Thomas Geburek ◽  
Karin Robitschek ◽  
Norbert Milasowszky ◽  
Klemens Schadauer

The colour morphs of immature female cones in European larch (Larix decidua Mill.) and Norway spruce (Picea abies (L.) Karst.) are green, red, and intermediate in colour. For the first time, these three colour morphs were studied to verify the thermoregulatory hypothesis and to investigate its underlying genetic spatial pattern. The study was based on an extensive systematic sampling, and data were analysed using principal component analysis (PCA), binary logistic regression (BLR), and spatial autocorrelation. Correlations between the nontransformed environmental variables and PC scores revealed two main ecological gradients, (i) altitude–temperate and (ii) annual precipitation. Loadings of the first two principal components exceeded 85% in both species. BLR was used to test the effect of the altitude–temperature gradient on the probability of occurrence of a specific cone colour. In both species, the occurrence of red cones was significantly positively related to high altitude with low temperatures, while green cones were significantly negatively correlated with decreasing temperature and increasing altitude. In both species the spatial pattern based on a putative Mendelian gene was nonrandom as indicated by significantly high Moran’s I values based on altitudinal distance. Spatial genetic structure was probably maintained by limited gene flow and balanced selection that maintained short-distance genetic differentiation.


1991 ◽  
Vol 69 (12) ◽  
pp. 2704-2708 ◽  
Author(s):  
M. Morgante ◽  
G. G. Vendramin ◽  
P. Rossi

The mating system was investigated in two neighbouring Norway spruce (Picea abies (L.) Karst.) populations with markedly different stand densities. The amount of outcrossing was estimated using open-pollinated array data at four enzyme loci. Multilocus estimates of the proportion of viable progeny owing to outcrossing were 0.956 and 0.955 for the low- and high-density stand, respectively, indicating that the large reduction in stand density had no impact on outcrossing rates. The multilocus estimate was higher than the mean single-locus estimate only for the low-density stand. The lowering of the mean estimate in the low-density stand is probably a consequence of the clustering of related individuals. The regression of pollen allele frequencies on ovule genotype, which is a direct measure of the effective selfing caused by consanguineous matings, had a significant coefficient for the low-density stand and a nonsignificant one for the high-density stand. This obvservation confirms that the major effect of low-stand density in Norway spruce is the occurrence of consanguineous matings. Key words: mating system, outcrossing rate, inbreeding, Norway spruce, stand density.


1997 ◽  
Vol 75 (6) ◽  
pp. 932-938 ◽  
Author(s):  
B. Münzenberger ◽  
T. Otter ◽  
A. Polle ◽  
D. Wüstrich

Peroxidase (EC 1.11.1.7) and laccase (EC 1.10.3.1) activities were determined in mycorrhizal and non-mycorrhizal main and lateral roots of Picea abies (L.) Karst. (Norway spruce) and Larix decidua Mill, (larch) and in mycelia of the ectomycorrhizal fungus Laccaria amethystea (Bull.) Murr. grown under axenic conditions. Peroxidase isozyme patterns were identified after isoelectric focussing. In both tree species, mycorrhizae contained the lowest, and laterals of noninoculated plants the highest, peroxidase activities. Pure mycelia of Laccaria amethystea contained considerable laccase activity but no peroxidase activity. Laccase activity was barely detected in noninoculated laterals of spruce, but was present in noninoculated laterals of larch and in main roots of Norway spruce and larch. Highest laccase activities were found in mycorrhizae of both tree species, indicating that most of the activity was derived from the fungus. Laterals of Norway spruce contained eight, and those of larch five, acidic peroxidase isozymes. In mycorrhizae of Norway spruce and larch, specific peroxidase isozymes with pI values of 4.5 and 6.2 and 5.8 and 6.0, respectively, were almost completely suppressed. The specific suppression of peroxidase suggests that the fungal symbiont is able to modify the host defence response in mature mycorrhizae. Key words: defence mechanism, laccase, mycorrhiza, peroxidase (isozymes), plant–fungus interaction.


Sign in / Sign up

Export Citation Format

Share Document