Species-specific allometric models for estimation of the above-ground carbon stock in miombo woodlands of Copperbelt Province of Zambia

2018 ◽  
Vol 417 ◽  
pp. 184-196 ◽  
Author(s):  
Kondwani Kapinga ◽  
Stephen Syampungani ◽  
Robby Kasubika ◽  
Arthur M. Yambayamba ◽  
Hastings Shamaoma
2013 ◽  
Vol 8 (1) ◽  
Author(s):  
Natasha S Ribeiro ◽  
Céu N Matos ◽  
Isabel R Moura ◽  
Robert A Washington-Allen ◽  
Ana I Ribeiro

2013 ◽  
Vol 310 ◽  
pp. 87-101 ◽  
Author(s):  
Wilson Ancelm Mugasha ◽  
Tron Eid ◽  
Ole Martin Bollandsås ◽  
Rogers Ernest Malimbwi ◽  
Shabani Athumani Omari Chamshama ◽  
...  

Author(s):  
Tarquinio Mateus Magalhães ◽  
Victoria Norberto Cossa ◽  
Benard Soares Guedes ◽  
Amélia Saraiva Monguela Fanheiro

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Geofrey Soka ◽  
Nanjiva Nzunda

Quantifying ecosystem carbon stocks is vital for understanding the relationship between changes in land use and cover (LULC) and carbon emissions; however, few studies have documented the impacts of carbon cycling on Miombo ecosystems. Here, we estimate the amounts of wood carbon which is stored and lost as a result of LULC changes in Kagoma Forest Reserve (KFR) for the periods between 1988 and 2010 using GIS data, Landsat imagery, and field observations. The land cover was captured on the basis of Landsat 5 TM and Landsat 7 ETM. The amounts of wood carbon stored and lost were estimated based on four previously developed allometric models. Spatial analysis of the Landsat images shows that in the year 1988, woodlands dominated the area by covering 32.66% whereas in the year 2010 the woodlands covered only 7.34% of the total area. The findings of the current study reveal that KFR had undergone notable changes in terms of LULC for the period of 1988–2010. It was estimated that the woodlands in the KFR lost an average of 4409.79 t Cyr-1. In this study, the amount of carbon stocks stored was estimated to be 21457.02 tonnes in tree stem biomass based on the area (1226.12 ha) that was covered by woodlands. We estimated that an average of 17.79 t Ch-1 was stored in the Miombo woodlands based on the four models. The efforts to ensure sustainable management of the Miombo ecosystem can contribute to the creation of a considerable carbon sink.


Author(s):  
Medha Bulusu ◽  
Christopher Martius ◽  
Jessica Clendenning

Miombo woodlands are extensive dry forest ecosystems in central and southern Africa covering ≈2.7 million km2. Despite their vast expanse and global importance for carbon storage, the long-term carbon stocks and dynamics have been poorly researched. The objective of this paper is to present and summarize the evidence gathered on above- and belowground (root and soil) carbon stocks of miombo woodlands from the 1960s to mid-2018 through a review. We analyzed data to answer: (1) What is the range of aboveground and belowground carbon stocks found in miombo woodlands over the last six decades? (2) Are there differences in carbon stocks based on land-management categories? (3) Does precipitation influence aboveground carbon stocks in old-growth miombo? (4) Do differences in cover type, age and region influence carbon stocks? (5) How does previous land-use affect carbon stocks in re-growth miombo? A literature review protocol was used to identify 56 publications from which quantitative data on aboveground and soil carbon pools were extracted. We found that the mean aboveground carbon stock in old-growth miombo was 30.83±16.76 Mg C ha-1 (range 1.48—107.24 Mg ha-1). Old-growth miombo had an average calculated root carbon stock of 16.49±9.18 Mg C ha-1 (range 0.8—57.81 Mg ha-1). Soil carbon stocks in old-growth miombo varied widely, between 8.75 and 134.6 Mg C ha-1 while in re-growth miombo they varied between 10.73 and 52.2 Mg C ha-1. It must be noted these soil data are given only for information; they inconsistently refer to varying soil depths and are thus difficult to interpret. The wide range reported suggests a need for further studies, much more systematic in methods and reporting. Other limitations of the dataset include the lack of systematic sampling and lack of data in some countries, viz. Angola and Democratic Republic of the Congo.


2017 ◽  
Vol 63 (2-3) ◽  
pp. 113-125 ◽  
Author(s):  
Ján Merganič ◽  
Katarína Merganičová ◽  
Bohdan Konôpka ◽  
Miloš Kučera

AbstractSince forests can play an efficient role in the mitigation of greenhouse gas emissions, objective information about the actual carbon stock is very important. Therefore, the presented paper analysed the carbon stock in the living merchantable trees (with diameter at breast height above 7 cm) of the Czech forests with regard to groups of tree species and tree compartments (wood under bark with diameter above 7 cm, wood under bark with diameter below 7 cm, bark, green twigs, foliage, stump and roots). We examined its regional distribution and relationship to the number of inhabitants and the gross domestic product. The data used for the analysis originated from 13,929 forest plots of the first Czech National Forest Inventory performed between 2001 and 2004. The total tree carbon stock was obtained as a sum of the carbon stock in the individual tree compartments estimated from the biomass amount in the compartments multiplied by the relative carbon content. Wood biomass amount was calculated by multiplying a particular part of tree volume with species-specific green wood density. The total amount of carbon stored in forest trees in the Czech Republic was over 327 mill. t, which is about 113 t of carbon per ha of forests. The highest carbon amount (160 mill. t, i.e. 49.0% of the total amount) was fixed in spruce. The minimum carbon amount fixed in the forest cover (14.35 mill. t) was calculated for Ústecký kraj (region), while the maximum carbon amount (51.51 mill. t) was found in Jihočeský kraj.


Sign in / Sign up

Export Citation Format

Share Document