Microsite conditions in a low-elevation Engelmann spruce forest favor ponderosa pine establishment during drought conditions

2020 ◽  
Vol 463 ◽  
pp. 118037 ◽  
Author(s):  
Edward M. Hill ◽  
Seth Ex
1993 ◽  
Vol 40 (3) ◽  
pp. 351-359 ◽  
Author(s):  
R. Scott Anderson

AbstractA new record from Potato Lake, central Arizona, details vegetation and climate changes since the mid-Wisconsin for the southern Colorado Plateau. Recovery of a longer record, discrimination of pine pollen to species groups, and identification of macrofossil remains extend Whiteside's (1965) original study. During the mid-Wisconsin (ca. 35,000-21,000 yr B.P.) a mixed forest of Engelmann spruce (Picea engelmannii) and other conifers grew at the site, suggesting a minimum elevational vegetation depression of ca. 460 m. Summer temperatures were as much as 5°C cooler than today. During the late Wisconsin (ca. 21,000-10,400 yr B.P.), even-cooler temperatures (7°C colder than today; ca. 800 m depression) allowed Engelmann spruce alone to predominate. Warming by ca. 10,400 yr B.P. led to the establishment of the modern ponderosa pine (Pinus ponderosa) forest. Thus, the mid-Wisconsin was not warm enough to support ponderosa pine forests in regions where the species predominates today. Climatic estimates presented here are consistent with other lines of evidence suggesting a cool and/or wet mid-Wisconsin, and a cold and/or wet late-Wisconsin climate for much of the Southwest. Potato Lake was almost completely dry during the mid-Holocene, but lake levels increased to near modern conditions by ca. 3000 yr B.P.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1085c-1085
Author(s):  
Karen E. Burr ◽  
Stephen J. Wanner ◽  
Richard W. Tinus

It is not known when changes in primary direct heat stress tolerance of conifer seedlings occur in relation to other seasonally changing physiological parameters. This information should be incorporated into nursery practices and the matching of genotypes to landscape sites. Greenhouse-cultured, container-grown Douglas-fir, Engelmann spruce, and ponderosa pine. were cold acclimated and reacclimated in growth chambers over 19 weeks. Direct heat stress tolerance of needles, cold hardiness, and bud dormancy were measured weekly. Douglas-fir and Engelmann spruce heat stress tolerance increased with the development of new growth through one complete growth cycle, i.e., bud break, maturation, cold hardening, dehardening, and bud break the following growing season. Ponderosa pine differed in that new needles had intermediate tolerance, and fully cold hardy needles were the most intolerant. In none of the species did the timing of changes in heat stress tolerance coincide consistently with changes in cold hardiness or bud dormancy.


2013 ◽  
Vol 43 (6) ◽  
pp. 570-583 ◽  
Author(s):  
Melissa Savage ◽  
Joy Nystrom Mast ◽  
Johannes J. Feddema

We examine regeneration dynamics across landscapes under extreme climate conditions and a human-altered fire regime in ponderosa pine (Pinus ponderosa Douglas ex Lawson & C. Lawson) forests of the American Southwest. Our research asks how well these forests recover when unprecedented conditions of a high-severity fire regime combine with historical drought conditions. Tree recruitment is documented at five sites in New Mexico after high-severity fires that burned forests in the drought that prevailed from ∼1945 to 1958. We develop a water-balance type model to evaluate how altered microclimate conditions in the years after a fire and during a drought may inhibit ponderosa pine regeneration in comparison with drought conditions alone. We empirically identify two pathways of forest recovery following high-severity fires during drought: recovery to nonforest types, either dense shrubfields or shrubs in grasslands (four sites) or recovery to hyperdense forest (one site). Model simulations predict fewer favorable opportunities for germination, fewer periods favorable for seedling establishment, shortening of favorable establishment periods, and more adverse conditions because of later spring and earlier fall hard freezes. Our research suggests that a specific climate window critical to the capacity of southwestern ponderosa pine trees to regenerate is narrowed by a synchronous occurrence of high-severity fire and drought.


2008 ◽  
Vol 84 (3) ◽  
pp. 401-409 ◽  
Author(s):  
Alan Vyse ◽  
Christine Ferguson ◽  
David J Huggard

We used transect surveys at a large-scale experimental site at Sicamous Creek, B.C. to measure the effects of five treatments on wind and snow damage in an old subalpine fir – Engelmann spruce forest: 10-ha clearcuts, arrays of 1-ha patch cuts, arrays of 0.1-ha patch cuts, individual-tree selection cuts and uncut controls. We also examined edge effects and conditions predisposing trees to damage. Transects were surveyed in 1997, 1999 and 2003 (2.7, 4.7 and 8.7 years postharvest). The increase in wind damage in the four harvested treatments compared to the uncut controls observed after 2.7 years was no longer evident following a snow damage event in the winter of 1998–1999, which was most severe in the uncut controls and leave strips. The damage recorded from this event was predominantly stem snapping rather than uprooting. Subsequent damage was low in all treatments, returning to the level first recorded in the uncut controls. Overall, after 8.7 years, the treatment differences were not statistically significant but the lowest average rates of damage were observed in the 0.1-ha patch cut arrays. The highest damage rates overall were observed within 10 m of the N and E edges of the 10-ha clearcuts. Damage rates in Engelmann spruce continued to be lower than rates for subalpine fir. Stem snapping, caused by some combination of snow loading and wind, is an underreported but widespread disturbance in these stands. Key words: ESSF forest, wind damage, snow damage, snapping, uprooting, subalpine fir (Abies lasiocarpa [Hook] Nutt.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), silvicultural systems, Sicamous Creek


1999 ◽  
Vol 75 (3) ◽  
pp. 467-472 ◽  
Author(s):  
Alan Vyse

The Sicamous Creek Project was established as part of the British Columbia Provincial Silvicultural Systems program in 1990 to investigate the effects of clearcutting and other practices on a high elevation forested ecosystem. The objective is to provide the forestry community with information on the ecology of high elevation forests in the Southern Interior, and the probable responses to a wide range of disturbance. After a period of planning by a team of scientists and foresters from several agencies, a site in subalpine fir-Engelmann spruce forest at 1530 m to 1830 m elevation near the town of Sicamous in the south central interior of British Columbia was logged in the winter of 1994–95. A range of treatments was created by logging one third of the forest in 30 ha experimental units using a range of opening sizes (individual tree selection, 1/10 ha, 1 ha, and 10 ha) and a no-logging control. Within these experimental units, smaller areas (0.08 ha) have been treated to create a range of soil disturbance conditions (no disturbance, burning, complete organic soil removal, mounding). A wide range of studies has been conducted on the site by a team of scientists before and after treatment and those studies are continuing. The project is long-term, (at least 30 years), the main treatments are sufficiently large to have operational significance, and the supported studies are intended to be interdisciplinary in scientific method and scope. Support for the project is strong within the operational forestry community because information on logging costs, safety issues and snags, windthrow, bark beetle management, wildlife habitat and small streams has already been made available to them. Studies of stand structure and wildlife habitat suggest that in future much greater emphasis should be placed on the silviculture of fir than spruce. Key words: silviculture systems, clearcutting, opening size, Engelmann spruce, subalpine fir, long term research, interdisciplinary research


2012 ◽  
Vol 42 (9) ◽  
pp. 1649-1660 ◽  
Author(s):  
R. Justin DeRose ◽  
James N. Long

The view that subalpine forest vegetation dynamics in western North America are “driven” by a particular disturbance type (i.e., fire) has shaped our understanding of their disturbance regimes. In the wake of a recent (1990s) landscape-extent spruce beetle ( Dendroctonus rufipennis Kirby) outbreak in the southern Rocky Mountains, we re-examined the temporal continuity in disturbance types and interactions and the possible role of drought on their occurrence by reconstructing antecedent disturbances for 11 sites across the Markagunt Plateau, southern Utah, USA. Multiple consistent lines of evidence suggested that historic fires were the primary antecedent disturbance, while relatively minor, stand-specific spruce beetle activity occurred later in stand development but prior to the recent outbreak. Unlike the recent outbreak, antecedent fires were spatially and temporally asynchronous over the period examined (~1600–2000). Reconstructed fire events primarily occurred during periods of prolonged drought. Similarly, historic spruce beetle activity, indicated by species-specific tree-ring release, and timing of Engelmann spruce ( Picea engelmannii Parry ex Engelm.) death dates from the recent outbreak were related to drought conditions. Vegetation dynamics on this landscape were strongly driven by historic fires and the recent spruce beetle outbreak, and drought conditions likely influenced the occurrence of both disturbance types.


1956 ◽  
Vol 88 (11) ◽  
pp. 653-655
Author(s):  
M. D. Proverbs

During the past few years the pine needle scale, Phenacaspis pinifoliae (Fitch), has severely injured ponderosa pine, Engelmann spruce, and other evergreens in the Okanagan Valley of British Columbia. The home owner is most concerned because this insect is capable of ruining the appearance of evergreens on his property. Infestations may be severe on trees growing in submarginal forest areas.Field experiments were conducted in the South Okanagan Valley in 1955 to determine whether lime-sulphur, malathion, or Diazinon (0,0-diethyl-0-[2-isopropyl-4-methyl-pyrimidyl (6)] thiophosphate) would control the scale on ponderosa pine trees.


1993 ◽  
Vol 118 (6) ◽  
pp. 840-844 ◽  
Author(s):  
Karen E. Burr ◽  
Stephen J. Wallner ◽  
Richard W. Tinus

Greenhouse-cultured, container-grown seedlings of interior Douglas fir [Pseudotsuga menziesii var. glauca (Beissn.) France], Engelmann spruce [Picea engelmannii (Parry) Engelm.], and ponderosa pine (Pinus ponderosa var. scopulorum Engelm.) were acclimated and deacclimated to cold in growth chambers over 19 weeks. Heat tolerance and cold hardiness of needles, and bud dormancy, were measured weekly. Heat tolerance of Douglas fir and Engelmann spruce needles increased with development through the first complete annual cycle: new needles on actively growing plants; mature needles, not cold-hardy, on dormant plants; cold-hardy needles on dormant and quiescent plants; and mature, needles, not cold-hardy, on actively growing plants. Heat tolerance of ponderosa pine needles differed in two respects. New needles had an intermediate tolerance level to heat, and fully cold-hardy needles were the least tolerant. Thus, the physiological changes that conferred cold hardiness were not associated with greater heat tolerance in all the conifers tested. In none of these species did the timing of changes in heat tolerance coincide consistently with changes in cold hardiness or bud dormancy.


1996 ◽  
Vol 11 (3) ◽  
pp. 81-84 ◽  
Author(s):  
Richard W. Tinus

Abstract Plug transplants were developed in the Pacific Northwest as a way to accelerate nursery production and increase root system fibrousness of barefoot seedlings, and the practice has been spreading to other areas. This paper describes a trial of its use in a do: Southwestern area. Ponderosa pine (Pinus ponderosa var. scopulorum Engelm.) seed was sown in February in small containers, transplanted to outdoor nursery beds at Albuquerque NM in May, lifted the following February, and outplanted as plug+1 stock in April. Survival was as good (76 and 71%) and growth better (232 vs. 209 mm) than standard 2+0 stock after 3 yr. A similar regime for Engelmann spruce (Picea engelmannii (Parry) Engelm.) produced seedlings that survived and grew well (survival 86 and 94%, height growth 54 and 56 mm for plug+2 and standard stock, respectively), but they required 2 yr in the nursery bed (plug+2) to reach adequate size for transplanting, which negated the advantage of reduced production time. West. J. Appl. For. 11(3):81-84.


Sign in / Sign up

Export Citation Format

Share Document