Carbon starvation is absent regardless of season of burn in Liquidambar styraciflua L.

2021 ◽  
Vol 479 ◽  
pp. 118588
Author(s):  
Stephen K. Ruswick ◽  
Joseph J. O'Brien ◽  
Doug P. Aubrey
1988 ◽  
Vol 34 (2) ◽  
pp. 162-168 ◽  
Author(s):  
H. S. Roychowdhury ◽  
M. Kapoor

In Neurospora crassa, heat shock results in the induction of 9 to 11 heat shock proteins (HSP), of which HSP80 is the most abundant and the first to be synthesized. The induction of HSP80 was investigated during normal growth (2% sucrose) and under sucrose starvation. Transfer of mycelium to a medium supplemented with ethanol stimulated the synthesis of HSP80, even at the normal growth temperature of 28 °C. It was also synthesized under carbon starvation conditions, where the medium was supplemented with 0.02% sucrose, 0.3% acetate, 0.2% lactate, or ethanol. A 30–35 kilodalton polypeptide was induced by heat shock in carbon-sufficient media, but in 0.02% sucrose and 0.3% acetate containing media it was synthesized at normal temperatures. While the overall heat shock response remained unaltered in these cultures, the abundance of HSP90 and HSP70, relative to HSP80, was greater. HSP80 appears to be controlled by carbon-catabolite repression as well as heat shock. Another high molecular mass protein (tentatively designated alc'80') was observed to be induced by heat shock, provided carbon starvation conditions prevailed concurrently.


2017 ◽  
Vol 8 ◽  
Author(s):  
Carlos Tarancón ◽  
Eduardo González-Grandío ◽  
Juan C. Oliveros ◽  
Michael Nicolas ◽  
Pilar Cubas

2013 ◽  
Vol 12 (5) ◽  
pp. 684-696 ◽  
Author(s):  
Alberto Rivetta ◽  
Kenneth E. Allen ◽  
Carolyn W. Slayman ◽  
Clifford L. Slayman

ABSTRACTFungi, plants, and bacteria accumulate potassium via two distinct molecular machines not directly coupled to ATP hydrolysis. The first, designated TRK, HKT, or KTR, has eight transmembrane helices and is folded like known potassium channels, while the second, designated HAK, KT, or KUP, has 12 transmembrane helices and resembles MFS class proteins. One of each type functions in the model organismNeurospora crassa, where both are readily accessible for biochemical, genetic, and electrophysiological characterization. We have now determined the operating balance between Trk1p and Hak1p under several important conditions, including potassium limitation and carbon starvation. Growth measurements, epitope tagging, and quantitative Western blotting have shown the geneHAK1to be much more highly regulated than isTRK1. This conclusion follows from three experimental results: (i) Trk1p is expressed constitutively but at low levels, and it is barely sensitive to extracellular [K+] and/or the coexpression ofHAK1; (ii) Hak1p is abundant but is markedly depressed by elevated extracellular concentrations of K+and by coexpression ofTRK1; and (iii) Carbon starvation slowly enhances Hak1p expression and depresses Trk1p expression, yielding steady-state Hak1p:Trk1p ratios of ∼500:1,viz., 10- to 50-fold larger than that in K+- and carbon-replete cells. Additionally, it appears that both potassium transporters can adjust kinetically to sustained low-K+stress by means of progressively increasing transporter affinity for extracellular K+. The underlying observations are (iv) that K+influx via Trk1p remains nearly constant at ∼9 mM/h when extracellular K+is progressively depleted below 0.05 mM and (v) that K+influx via Hak1p remains at ∼3 mM/h when extracellular K+is depleted below 0.1 mM.


2007 ◽  
Vol 56 (2) ◽  
pp. 346-346 ◽  
Author(s):  
N. Habili ◽  
N. Farrokhi ◽  
J. W. Randles

2009 ◽  
Vol 42 (10) ◽  
pp. 27-32
Author(s):  
Delphine Ropers ◽  
Valentina Baldazzi ◽  
Hidde de Jong

2005 ◽  
Vol 102 (3) ◽  
pp. 690-694 ◽  
Author(s):  
J. K. Ward ◽  
J. M. Harris ◽  
T. E. Cerling ◽  
A. Wiedenhoeft ◽  
M. J. Lott ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document