potassium limitation
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 494 ◽  
pp. 119275
Author(s):  
Ivan Cornut ◽  
Guerric Le Maire ◽  
Jean-Paul Laclau ◽  
Joannès Guillemot ◽  
Louis Mareschal ◽  
...  

Author(s):  
long peng ◽  
Xiaoliang Shan ◽  
Yuzhan Yang ◽  
Yuchen Wang ◽  
Irina Druzhinina ◽  
...  

Several species of soil free-living saprotrophs can sometimes establish biotrophic symbiosis with plants, but the basic biology of this association remains largely unknown. Here, we investigate the symbiotic interaction between a common soil saprotroph, Clitopilus hobsonii (Agaricomycetes), and the American sweetgum (Liquidambar styraciflua). Notably, the colonized root cortical cells contain numerous microsclerotia-like structures. Fungal colonization led to increased plant growth and facilitated potassium uptake, particularly under potassium limitation (0.05 mM K+). The expression of plant genes related to potassium uptake is not altered during symbiosis, whereas the transcripts of three fungal genes encoding ACU, HAK, and SKC involved in K+ nutrition is found in colonized roots. We confirmed the K+ influx activities by expressing the ChACU and ChSKC genes into a yeast K+-uptake-defective mutant. Upregulation of the ChACU under 0.05 mM K+ and no K+ conditions was demonstrated in planta and in vitro compared to normal condition (5 mM K+). In addition, colonized plants displayed a larger accumulation of soluble sugars under 0.05 mM K+. The present study highlights that potassium limitation promotes this novel tree-fungus symbiosis mainly through a reciprocal transfer of additional carbon and potassium to both partners, and the role of dual soil saprotroph/symbiotroph in tree nutrition.


2020 ◽  
Vol 71 (9) ◽  
pp. 2678-2689 ◽  
Author(s):  
Andrea Tagliani ◽  
Anh Nguyet Tran ◽  
Giacomo Novi ◽  
Riccardo Di Mambro ◽  
Michele Pesenti ◽  
...  

Abstract Hypoxic conditions often arise from waterlogging and flooding, affecting several aspects of plant metabolism, including the uptake of nutrients. We identified a member of the CALCINEURIN β-LIKE INTERACTING PROTEIN KINASE (CIPK) family in Arabidopsis, CIPK25, which is induced in the root endodermis under low-oxygen conditions. A cipk25 mutant exhibited higher sensitivity to anoxia in conditions of potassium limitation, suggesting that this kinase is involved in the regulation of potassium uptake. Interestingly, we found that CIPK25 interacts with AKT1, the major inward rectifying potassium channel in Arabidopsis. Under anoxic conditions, cipk25 mutant seedlings were unable to maintain potassium concentrations at wild-type levels, suggesting that CIPK25 likely plays a role in modulating potassium homeostasis under low-oxygen conditions. In addition, cipk25 and akt1 mutants share similar developmental defects under waterlogging, further supporting an interplay between CIPK25 and AKT1.


2018 ◽  
Vol 30 (6) ◽  
pp. 2341-2347 ◽  
Author(s):  
Taiki Mori ◽  
Senhao Wang ◽  
Zhuohang Wang ◽  
Cong Wang ◽  
Hui Mo ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Jan Gundlach ◽  
Christina Herzberg ◽  
Dietrich Hertel ◽  
Andrea Thürmer ◽  
Rolf Daniel ◽  
...  

ABSTRACT Potassium is the most abundant metal ion in every living cell. This ion is essential due to its requirement for the activity of the ribosome and many enzymes but also because of its role in buffering the negative charge of nucleic acids. As the external concentrations of potassium are usually low, efficient uptake and intracellular enrichment of the ion is necessary. The Gram-positive bacterium Bacillus subtilis possesses three transporters for potassium, KtrAB, KtrCD, and the recently discovered KimA. In the absence of the high-affinity transporters KtrAB and KimA, the bacteria were unable to grow at low potassium concentrations. However, we observed the appearance of suppressor mutants that were able to overcome the potassium limitation. All these suppressor mutations affected amino acid metabolism, particularly arginine biosynthesis. In the mutants, the intracellular levels of ornithine, citrulline, and arginine were strongly increased, suggesting that these amino acids can partially substitute for potassium. This was confirmed by the observation that the supplementation with positively charged amino acids allows growth of B. subtilis even at the extreme potassium limitation that the bacteria experience if no potassium is added to the medium. In addition, a second class of suppressor mutations allowed growth at extreme potassium limitation. These mutations result in increased expression of KtrAB, the potassium transporter with the highest affinity and therefore allow the acquisition and accumulation of the smallest amounts of potassium ions from the environment. IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow unless they acquire mutations that result in the accumulation of positively charged amino acids such as ornithine, citrulline, and arginine. Supplementation of the medium with these amino acids rescued growth even in the absence of externally added potassium. Moreover, these growth conditions, which the bacteria experience as an extreme potassium limitation, can be overcome by the acquisition of mutations that result in increased expression of the high-affinity potassium transporter KtrAB. Our results indicate that positively charged amino acids can partially take over the function of potassium. IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow unless they acquire mutations that result in the accumulation of positively charged amino acids such as ornithine, citrulline, and arginine. Supplementation of the medium with these amino acids rescued growth even in the absence of externally added potassium. Moreover, these growth conditions, which the bacteria experience as an extreme potassium limitation, can be overcome by the acquisition of mutations that result in increased expression of the high-affinity potassium transporter KtrAB. Our results indicate that positively charged amino acids can partially take over the function of potassium.


2016 ◽  
Vol 214 (12) ◽  
pp. 2006-2013 ◽  
Author(s):  
Reham Samir ◽  
Salma H. Hussein ◽  
Noha M. Elhosseiny ◽  
Marwa S. Khattab ◽  
Alaa E. Shawky ◽  
...  
Keyword(s):  

PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e64682 ◽  
Author(s):  
Verena Untiet ◽  
Ramakrishnan Karunakaran ◽  
Maria Krämer ◽  
Philip Poole ◽  
Ursula Priefer ◽  
...  

2013 ◽  
Vol 12 (5) ◽  
pp. 684-696 ◽  
Author(s):  
Alberto Rivetta ◽  
Kenneth E. Allen ◽  
Carolyn W. Slayman ◽  
Clifford L. Slayman

ABSTRACTFungi, plants, and bacteria accumulate potassium via two distinct molecular machines not directly coupled to ATP hydrolysis. The first, designated TRK, HKT, or KTR, has eight transmembrane helices and is folded like known potassium channels, while the second, designated HAK, KT, or KUP, has 12 transmembrane helices and resembles MFS class proteins. One of each type functions in the model organismNeurospora crassa, where both are readily accessible for biochemical, genetic, and electrophysiological characterization. We have now determined the operating balance between Trk1p and Hak1p under several important conditions, including potassium limitation and carbon starvation. Growth measurements, epitope tagging, and quantitative Western blotting have shown the geneHAK1to be much more highly regulated than isTRK1. This conclusion follows from three experimental results: (i) Trk1p is expressed constitutively but at low levels, and it is barely sensitive to extracellular [K+] and/or the coexpression ofHAK1; (ii) Hak1p is abundant but is markedly depressed by elevated extracellular concentrations of K+and by coexpression ofTRK1; and (iii) Carbon starvation slowly enhances Hak1p expression and depresses Trk1p expression, yielding steady-state Hak1p:Trk1p ratios of ∼500:1,viz., 10- to 50-fold larger than that in K+- and carbon-replete cells. Additionally, it appears that both potassium transporters can adjust kinetically to sustained low-K+stress by means of progressively increasing transporter affinity for extracellular K+. The underlying observations are (iv) that K+influx via Trk1p remains nearly constant at ∼9 mM/h when extracellular K+is progressively depleted below 0.05 mM and (v) that K+influx via Hak1p remains at ∼3 mM/h when extracellular K+is depleted below 0.1 mM.


Sign in / Sign up

Export Citation Format

Share Document