Tree species dominance in neotropical savanna aboveground biomass and productivity

2021 ◽  
Vol 496 ◽  
pp. 119430
Author(s):  
Marcela de Castro Nunes Santos Terra ◽  
Jamir Afonso do Prado-Júnior ◽  
Cléber Rodrigo de Souza ◽  
Luiz Otávio Rodrigues Pinto ◽  
Eduarda Martiniano de Oliveira Silveira ◽  
...  
2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


NeoBiota ◽  
2019 ◽  
Vol 46 ◽  
pp. 1-21 ◽  
Author(s):  
Andrzej M. Jagodziński ◽  
Marcin K. Dyderski ◽  
Paweł Horodecki ◽  
Kathleen S. Knight ◽  
Katarzyna Rawlik ◽  
...  

Experiments testing multiple factors that affect the rate of invasions in forests are scarce. We aimed to assess how the biomass of invasive Prunusserotina changed over eight years and how this change was affected by light availability, tree stand growth, and propagule pressure. The study was conducted in Siemianice Experimental Forest (W Poland), a common garden forest experiment with 14 tree species. We investigated aboveground biomass and density of P.serotina within 53 experimental plots with initial measurements in 2005 and repeated in 2013. We also measured light availability and distance from seed sources. We used generalized additive models to assess the impact of particular predictors on P.serotina biomass in 2013 and its relative change over eight years. The relative biomass increments of P.serotina ranged from 0 to 22,000-fold. The success of P.serotina, expressed as aboveground biomass and biomass increment, varied among different tree species stands, but was greater under conifers. Total biomass of P.serotina depended on light and propagule availability while biomass increment depended on the change in tree stand biomass, a metric corresponding to tree stand maturation. Our study quantified the range of invasion intensity, expressed as biomass increment, in a forest common garden experiment with 14 tree species. Canopy cover was the most important variable to reduce susceptibility to invasion by P.serotina. Even a modest decrease of overstory biomass, e.g. caused by dieback of coniferous species, may be risky in areas with high propagule pressure from invasive tree species. Thus, P.serotina control may include maintaining high canopy closure and supporting natural regeneration of tree species with high leaf area index, which shade the understory.


Sign in / Sign up

Export Citation Format

Share Document