Phenological niche overlap between invasive buckthorn (Rhamnus cathartica) and native woody species

2021 ◽  
Vol 498 ◽  
pp. 119568
Author(s):  
Michael J. Schuster ◽  
Peter D. Wragg ◽  
Peter B. Reich
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Anna P. Rodrigues ◽  
Elena Moltchanova ◽  
David A. Norton ◽  
Matthew Turnbull

AbstractBiotic factors such as the presence of invasive animal and/or plant species are well known as major causes of ecological degradation and as limiting either natural or assisted (human-induced) ecological restoration. However, abiotic aspects of the landscape, such as water availability and soil physical/chemical conditions can also potentially limit restoration and should be considered. Dryland ecosystems are amongst the world’s most threatened and least protected. New Zealand’s drylands have been drastically changed, initially through burning, agricultural and grazing practices and the impacts of introduced herbivores and plants. This research aimed at identifying some of the key environmental factors preventing the reestablishment of native woody species in a New Zealand dryland ecosystem. The experiments involved a combination of shading, irrigation and grazing exclusion. The results showed that supplemental water was not beneficial for the survival and growth of the native seedlings, unless combined with shade. Fencing proved important for establishment, even though the species used are regarded in the literature as unpalatable to herbivores. The results indicated that the presence of shade was fundamental for the establishment and growth of the native seedlings likely due to improvements in the microclimate, soil aeration, and water availability to seedlings.


2003 ◽  
Vol 19 (3) ◽  
pp. 315-324 ◽  
Author(s):  
W. Zangaro ◽  
S. M. A. Nisizaki ◽  
J. C. B. Domingos ◽  
E. M. Nakano

Arbuscular mycorrhizal (AM) fungi colonization and response were studied in seedlings of 80 native woody species belonging to different successional groups from the Tibagi River Basin, Paraná State, south Brazil. This study includes data from 43 native woody species already published. The results with 80 species did not differ from the results of the 43 species. The experiment was carried out in a greenhouse in plastic bags filled with a mix of subsoil (85%) and sand (15%), inoculated or not with spores of native AM fungi obtained from rhizosphere soil of different native tree species in an area with natural vegetation dominated by woody pioneer species. The successional groups were represented by 16 pioneer, 20 early secondary, 29 late-secondary and 15 climax species. The AM response and colonization in the greenhouse were 5.9 and 4.2 times greater in the early successional species than in the late-successional species, respectively. Seedlings of 49 woody species were collected in the interior under the canopy of the tropical forest of the Mata dos Godoy State Park and in a cleared area dominated by woody pioneer species. The percentage of AM colonization in the field was 54.9, 40.4, 7.2 and 3.1 for the pioneer, early secondary, late-secondary and climax species, respectively. The response to AM inoculation was strongly and directly related to AM colonization in the greenhouse and field and inversely related to seed weight. The AM colonization in the greenhouse was strongly and directly related to AM colonization in field. The late-successional species showed lower AM colonization and response than early successional species. The accentuated mycotrophism of the early successional species may be involved in their establishment, growth, survival and early forest structuring on low-fertility soils.


2019 ◽  
Vol 76 (4) ◽  
Author(s):  
Orna Reisman-Berman ◽  
Tamar Keasar ◽  
Noemi Tel-Zur

Abstract Key message We propose a silvicultural-ecological, participatory-based, conceptual framework to optimize the socioeconomic-ecological services provided by dryland afforestation, i.e. addressing the limited resources in arid areas while minimizing the harm to the environment. The framework applies the following criteria to select multifunctional tree species: (a) drought resistance, (b) minimal disruption of ecosystem integrity, and (c) maximization of ecosystem services, including supporting community livelihoods. Context Dryland afforestation projects frequently aim to combine multiple ecological and economic benefits. Nevertheless, plant species for such projects are selected mainly to withstand aridity, while other important characteristics are neglected. This approach has resulted in planted forests that are drought-resistant, yet harm the natural ecosystem and provide inadequate ecosystem services for humans. Aims We suggest a comprehensive framework for species selection for dryland afforestation that would increase, rather than disrupt, ecological and socio-economic services. Methods To formulate a synthesis, we review and analyze past and current afforestation policies and the socio-ecological crises ensuing from them. Results To increase afforestation services and to support human-community needs, both native and non-native woody species should be considered. The framework suggests experimental testing of candidate species for their compliance with the suggested species selection criteria. Furthermore, regional stakeholders are involved in evaluating, ranking, and prioritizing the candidate species according to experimental results and stakeholders’ values and needs. We exemplify our approach by describing our ongoing research project, aimed to evaluate several native and exotic Ziziphus species in the Middle East region. Conclusion The employment of our proposed framework forms a novel community of native and non-native woody species. We discuss the ecological context of this proposal.


2020 ◽  
pp. 1-6
Author(s):  
María Emilia Lorenzo ◽  
Carina Noelia Casero ◽  
Patricia Elizabeth Gómez ◽  
Adrián Federico Segovia ◽  
Lara Carolina Figueroa ◽  
...  

2005 ◽  
Vol 21 (5) ◽  
pp. 529-540 ◽  
Author(s):  
Waldemar Zangaro ◽  
Fabio Rodrigo Nishidate ◽  
Flavia Regina Spago Camargo ◽  
Graziela Gorete Romagnoli ◽  
Julia Vandressen

The relationships between arbuscular mycorrhizal fungi and root morphological characteristics were studied under greenhouse conditions of 78 tropical native woody species and 47 seedling species collected in the field. Seedlings of native woody pioneer and early secondary species that generally exhibited fine roots with a dense cover of long root hairs showed higher mycorrhizal response and root mycorrhizal colonization than late-secondary and climax species with coarse roots with a sparse cover of short root hairs. Root-hair length and incidence decreased with the progression among the successional groups while fine-root diameter increased, both in the greenhouse and in the field. The mycorrhizal response was highly correlated to root mycorrhizal colonization in the greenhouse and in the field. These parameters were inversely correlated with the seed mass and fine-root diameter, but directly correlated with root-hair incidence, both in the greenhouse and in the field. Mycorrhizal response and root mycorrhizal colonization were also directly correlated with the root-hair length and root/shoot ratio of uninoculated plants. The seedling mycorrhizal status of the early successional woody species suggests that the root traits of these fast-growing species can be more receptive to attraction, infection and colonization by arbuscular mycorrhizas than root traits of late-successional species.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Abiot Molla ◽  
Gonfa Kewessa

The major impact of humans on forest ecosystems including loss of forest area, habitat fragmentation, and soil degradation leads to losses of biodiversity. These problems can be addressed by integration of agriculture with forests and maintaining the existing forests. This study was initiated to assess woody species diversity of traditional agroforestry practices. Three study sites (Burkitu, Chire, and Erba) were selected based on the presence of agroforestry practice. Forty-eight (48) sample quadrants having an area of 20 m × 20 m, 16 sample quadrants in each study site, were systematically laid using four transect lines at different distance. The diversity of woody species was analyzed by using different diversity indices. A total of 55 woody species belonging to 31 families were identified and documented. There were significantly different (P<0.05) among the study Kebeles (peasant associations). Mangifera indica, Entada abyssinica, and Croton macrostachyus were found to have the highest Important Value Index. The results confirmed that traditional agroforestry plays a major role in the conservation of native woody species. However, threats to woody species were observed. Therefore, there is a need to undertake conservation practices before the loss of species.


Sign in / Sign up

Export Citation Format

Share Document