Mycorrhizal response and successional status in 80 woody species from south Brazil

2003 ◽  
Vol 19 (3) ◽  
pp. 315-324 ◽  
Author(s):  
W. Zangaro ◽  
S. M. A. Nisizaki ◽  
J. C. B. Domingos ◽  
E. M. Nakano

Arbuscular mycorrhizal (AM) fungi colonization and response were studied in seedlings of 80 native woody species belonging to different successional groups from the Tibagi River Basin, Paraná State, south Brazil. This study includes data from 43 native woody species already published. The results with 80 species did not differ from the results of the 43 species. The experiment was carried out in a greenhouse in plastic bags filled with a mix of subsoil (85%) and sand (15%), inoculated or not with spores of native AM fungi obtained from rhizosphere soil of different native tree species in an area with natural vegetation dominated by woody pioneer species. The successional groups were represented by 16 pioneer, 20 early secondary, 29 late-secondary and 15 climax species. The AM response and colonization in the greenhouse were 5.9 and 4.2 times greater in the early successional species than in the late-successional species, respectively. Seedlings of 49 woody species were collected in the interior under the canopy of the tropical forest of the Mata dos Godoy State Park and in a cleared area dominated by woody pioneer species. The percentage of AM colonization in the field was 54.9, 40.4, 7.2 and 3.1 for the pioneer, early secondary, late-secondary and climax species, respectively. The response to AM inoculation was strongly and directly related to AM colonization in the greenhouse and field and inversely related to seed weight. The AM colonization in the greenhouse was strongly and directly related to AM colonization in field. The late-successional species showed lower AM colonization and response than early successional species. The accentuated mycotrophism of the early successional species may be involved in their establishment, growth, survival and early forest structuring on low-fertility soils.

2000 ◽  
Vol 16 (4) ◽  
pp. 603-622 ◽  
Author(s):  
W. Zangaro ◽  
V. L. R. Bononi ◽  
S. B. Trufen

Seedlings from 43 native woody species belonging to different successional groups from the Tibagi River Basin, Paraná State, South Brazil were studied to obtain information on the importance of colonization by native arbuscular mycorrhizal (AM) fungi. The experiment was carried out in a greenhouse for 15 to 45 wk, with soil-mix treatments and four successional groups. The mycorrhizal dependency was 90, 48, 12 and 14% of the pioneer, early secondary, late secondary and climax species, respectively. The content of P, Ca and K was 20, 17 and 23 times greater, respectively, in the leaves of the pioneer species than in the other successional groups. The colonization by AM fungi in field was studied in seedlings of 36 native woody species collected in the interior of the forest of the Mata dos Godoy State Park, and in open area at the beginning of arboreal succession. The mycorrhizal colonization in the field was 55.5, 26.9, 6.1 and 2.2% for the pioneer, early secondary, late secondary and climax species, respectively. To assess the mycorrhizal inoculum potential, rhizosphere soil was collected in the interior of the forest and a gap in the same forest and in a cleared area abandoned for natural regeneration. The inoculum potentials and the spore number in the area at the beginning of succession were 5.6 and 53.4 times greater than in the interior of the forest. The results show that the initial growth of the woody species which take part in the initial phases of succession may be more dependent on the AM fungi, in soils poor in minerals, while those that make up the final succession phases may be less dependent. The potential of the AM fungi inoculum decreases throughout the successional process and there is a relation between the inoculum potential found in the field and the occurrence for the different habitats of the species of adult plants belonging to different successional groups.


2007 ◽  
Vol 23 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Waldemar Zangaro ◽  
Fabio Rodrigo Nishidate ◽  
Julia Vandresen ◽  
Galdino Andrade ◽  
Marco Antonio Nogueira

Twelve native woody species were studied to investigate the influences of soil fertility and root morphology on colonization by arbuscular mycorrhizal (AM) fungi during seedling establishment and growth. Seedlings were grown in soils of low and high natural fertility, uninoculated or inoculated with AM fungi, under greenhouse conditions. The mycorrhizal root colonization and plant responsiveness were higher among early successional species than late successional ones. Among early successional species, in both soils, mycorrhizal colonization provided significant increase in total dry mass, growth rates of shoot and root, root length, density of root tissues, root surface area and P concentration and content in the shoot. Early successional species grown with AM fungi displayed significant decreases in carbon allocation to roots, specific root length and the length and incidence of root hairs. Mycorrhizal colonization did not affect the root morphology of the late successional species in either soil. The growth of these woody species was influenced by differences in soil fertility. There was positive correlation between the degree of plant responses to AM inoculation with the percentage of root colonized by AM fungi. In both soils, plant responsiveness and mycorrhizal root colonization correlated positively to root-hair incidence and root-hair length and correlated negatively to fine-root diameter. The results suggest that during the establishment of seedlings, the large responses to the inoculation and colonization of roots by AM fungi are related to both the successional status and root morphological plasticity of the host plant, regardless of soil fertility.


2005 ◽  
Vol 21 (5) ◽  
pp. 529-540 ◽  
Author(s):  
Waldemar Zangaro ◽  
Fabio Rodrigo Nishidate ◽  
Flavia Regina Spago Camargo ◽  
Graziela Gorete Romagnoli ◽  
Julia Vandressen

The relationships between arbuscular mycorrhizal fungi and root morphological characteristics were studied under greenhouse conditions of 78 tropical native woody species and 47 seedling species collected in the field. Seedlings of native woody pioneer and early secondary species that generally exhibited fine roots with a dense cover of long root hairs showed higher mycorrhizal response and root mycorrhizal colonization than late-secondary and climax species with coarse roots with a sparse cover of short root hairs. Root-hair length and incidence decreased with the progression among the successional groups while fine-root diameter increased, both in the greenhouse and in the field. The mycorrhizal response was highly correlated to root mycorrhizal colonization in the greenhouse and in the field. These parameters were inversely correlated with the seed mass and fine-root diameter, but directly correlated with root-hair incidence, both in the greenhouse and in the field. Mycorrhizal response and root mycorrhizal colonization were also directly correlated with the root-hair length and root/shoot ratio of uninoculated plants. The seedling mycorrhizal status of the early successional woody species suggests that the root traits of these fast-growing species can be more receptive to attraction, infection and colonization by arbuscular mycorrhizas than root traits of late-successional species.


1999 ◽  
Vol 34 (5) ◽  
pp. 829-837 ◽  
Author(s):  
Antonio Eduardo Furtini Neto ◽  
Álvaro Vilela de Resende ◽  
Fabiano Ribeiro do Vale ◽  
Ivo Ribeiro Silva

The liming effects on the growth of fifteen woody species of Brazil were evaluated under glasshouse conditions. The species used belong to different ecologic groups, namely: pioneer, secondary and climax trees. The soil treatments consisted in the absence of liming (-LIM) and liming sufficient to reach soil pH 6.0 (+LIM). In general, the pioneer and secondary species presented higher responses in total dry matter production (TDM) to soil liming, whereas the TDM of the climax species were not affected by the soil treatments. Thus, the ranking of species in relation to soil acidity tolerance ranged from highly sensitive to highly tolerant. The pioneer and secondary species growing in limed soil (+LIM) showed higher calcium (Ca), magnesium (Mg) and phosphorus (P) contents, and, at the same time lower Ca, Mg utilization efficiency (CaUE and MgUE respectively), whereas the P utilization (PUE) was higher. In contrast, the Ca, Mg and P content in the climax species were only slightly affected by the soil liming. In general the climax species were less efficient in the CaUE and MgUE than the pioneer and secondary species.


2021 ◽  
Author(s):  
◽  
Alexandra Coles

<p>New Zealand has lost over 90% of its former wetlands and many that remain are in a degraded state. Restoration projects are often impeded by the failure of native plants to establish back into non-native dominated communities. Phormium tenax is fast growing and acts a nurse plant in wetlands, accelerating the establishment of slower growing native woody species. The roles of below ground organisms are increasingly recognised as affecting plant community dynamics, and this study investigates the diversity of a group of pervasive organisms, the arbuscular mycorrhizal fungi (AMF), growing in symbiosis with Phormium tenax. Next generation sequencing was used to create two libraries to determine the sensitivity of coding and non-coding molecular markers when characterising the AMF community associated with Phormium tenax.  AMF communities colonising individual plants were found to be diverse, and varied across restoration stages, but uncorrelated with soil moisture. The composition of of AMF communities changed seasonally and I observed more AMF hyphae and arbuscules in winter.</p>


2021 ◽  
Author(s):  
◽  
Alexandra Coles

<p>New Zealand has lost over 90% of its former wetlands and many that remain are in a degraded state. Restoration projects are often impeded by the failure of native plants to establish back into non-native dominated communities. Phormium tenax is fast growing and acts a nurse plant in wetlands, accelerating the establishment of slower growing native woody species. The roles of below ground organisms are increasingly recognised as affecting plant community dynamics, and this study investigates the diversity of a group of pervasive organisms, the arbuscular mycorrhizal fungi (AMF), growing in symbiosis with Phormium tenax. Next generation sequencing was used to create two libraries to determine the sensitivity of coding and non-coding molecular markers when characterising the AMF community associated with Phormium tenax.  AMF communities colonising individual plants were found to be diverse, and varied across restoration stages, but uncorrelated with soil moisture. The composition of of AMF communities changed seasonally and I observed more AMF hyphae and arbuscules in winter.</p>


2012 ◽  
Vol 8 (1) ◽  
Author(s):  
Paskalina Th. Lefaan

<em>Seagrasses habitats have both physical and ecological functions that support adjacent waters qualities and its dwelling organisms. There are varies of pressure on seagrass environmental, especially due to people activities that could decrease its function and habitat stabilities. The study aimed to determine about seagrass habitat stabilities from its species composition and/or densities. Line transect-plots and exploration methods were used in five locations of Manokwari coastal waters, that were, Andai, Rendani, Wosi, Briosi, and Tanjung Manggewa. There are five pioneer species (Cymodocea rotundata, Halodule pinifolia, H. uninervis, Syringodium isoetifolium, Halophila ovalis) and 3 climax species (Cymodocea serrulata, Enhalus acoroides, Thalassia hemprichii). The pioneer only found in Andai and Wosi, however both pioneer and climax encountered in three other locations. In Rendani and Tanjung Manggewa higher density of climax species (T. hemprichii) were 617.7 and 828.0 stands m-2, respectively, although in Briosi the higher pioneer (C. rotundata) of 570.7 stands m-2. These conditions showed that seagrass habitat in Rendani and Tanjung Manggewa are more stable compared to Briosi, as well as Andai and Wosi. It concluded that pioneer species found in newly formed habitat or disturbed, on the other hand, climax in more stable habitat.</em>


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Reda E. Abdelhameed ◽  
Nagwa I. Abu-Elsaad ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rabab A. Metwally

Important gaps in knowledge remain regarding the potential of nanoparticles (NPs) for plants, particularly the existence of helpful microorganisms, for instance, arbuscular mycorrhizal (AM) fungi present in the soil. Hence, more profound studies are required to distinguish the impact of NPs on plant growth inoculated with AM fungi and their role in NP uptake to develop smart nanotechnology implementations in crop improvement. Zinc ferrite (ZnFe2O4) NPs are prepared via the citrate technique and defined by X-ray diffraction (XRD) as well as transmission electron microscopy for several physical properties. The analysis of the XRD pattern confirmed the creation of a nanocrystalline structure with a crystallite size equal to 25.4 nm. The effects of ZnFe2O4 NP on AM fungi, growth and pigment content as well as nutrient uptake of pea (Pisum sativum) plants were assessed. ZnFe2O4 NP application caused a slight decrease in root colonization. However, its application showed an augmentation of 74.36% and 91.89% in AM pea plant shoots and roots’ fresh weights, respectively, compared to the control. Moreover, the synthesized ZnFe2O4 NP uptake by plant roots and their contents were enhanced by AM fungi. These findings suggest the safe use of ZnFe2O4 NPs in nano-agricultural applications for plant development with AM fungi.


Sign in / Sign up

Export Citation Format

Share Document