Response of water-bound fluxes of potassium, calcium, magnesium and sodium to nutrient additions in an Ecuadorian tropical montane forest

2021 ◽  
Vol 501 ◽  
pp. 119661
Author(s):  
Andre Velescu ◽  
Jürgen Homeier ◽  
Jörg Bendix ◽  
Carlos Valarezo ◽  
Wolfgang Wilcke
Erdkunde ◽  
2009 ◽  
Vol 63 (4) ◽  
pp. 347-364 ◽  
Author(s):  
Claudia Dislich ◽  
Sven Günter ◽  
Jürgen Homeier ◽  
Boris Schröder ◽  
Andreas Huth

2014 ◽  
Vol 31 (2) ◽  
pp. 139-152 ◽  
Author(s):  
Bärbel Wittich ◽  
Jürgen Homeier ◽  
Christoph Leuschner

Abstract:Not much is known about the nitrogen (N) uptake capacity and N-form preference of tropical trees. In a replicated labelling experiment with15N-ammonium,15N-nitrate and dual-labelled glycine applied to saplings of six tree species from southern Ecuadorian montane forests, we tested the hypotheses that (1) the saplings of tropical trees are capable of using organic N even though they are forming arbuscular mycorrhizas, and (2) with increasing altitude, tree saplings increasingly prefer ammonium and glycine over nitrate due to reduced nitrification and growing humus accumulation. Three- to 5-y-old saplings of two species each from 1000, 2000 and 3000 m asl were grown in pots inside the forest at their origin and labelled with non-fertilizing amounts of the three N forms;15N enrichment was detected 5 days after labelling in fine roots, coarse roots, shoots and leaves. The six species differed with respect to their N-form preference, but neither the abundance of ammonium and nitrate in the soil nor altitude (1000–3000 m asl) seemed to influence the preference. Two species (those with highest growth rate) preferred NH4+over NO3−, while the other four species took up NO3−and NH4+at similar rates when both N forms were equally available. After13C-glycine addition,13C was significantly accumulated in the biomass of three species (all species with exclusively AM symbionts) but a convincing proof of the uptake of intact glycine molecules by these tropical montane forest trees was not obtained.


Flora ◽  
2007 ◽  
Vol 202 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Johannes Dietz ◽  
Christoph Leuschner ◽  
Dirk Hölscher ◽  
Heinrich Kreilein

2008 ◽  
Vol 24 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Satomi Shiodera ◽  
Joeni S. Rahajoe ◽  
Takashi Kohyama

Abstract:The relationship between leaf longevity and other leaf traits was compared among different life-form categories (trees, herbs, climbers and epiphytes) of 101 plant species in a tropical montane forest on Mt. Halimun, West Java, Indonesia. We applied the Cox proportional hazards regression to estimate the leaf longevity of each species from 30 mo of census data. We examined whether estimated longevity was explained by either species life-form categories, taxonomic groupings (eudicots, monocots, magnoliids and chloranthales, and ferns) or such leaf traits as leaf area, leaf mass per area (LMA), mass-based leaf nitrogen, penetrometer reading, condensed-tannin-free total phenolics and condensed tannin. There was a wide-ranged interspecific variation in leaf longevity, mostly 10–50 mo, similarly across life-form categories. LMA showed a strong positive influence on leaf longevity. We found that relationships between leaf longevity and some leaf traits were different among various life forms. Trees tended to have high LMA, while climbers tended to have low LMA at the same leaf longevity. We hypothesize that such difference among life forms reflects shoot architecture characteristics. Multi-shoot trees with branching architecture need to have self-supporting leaves, whereas semi-epiphytic climbers can maintain relatively low biomass investment to leaves hanging or relying upon the mechanical support from host plants.


Tropics ◽  
2009 ◽  
Vol 18 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Kazuya KIMURA ◽  
Takakazu YUMOTO ◽  
Kihachiro KIKUZAWA ◽  
Kanehiro KITAYAMA

Sign in / Sign up

Export Citation Format

Share Document