Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest

2008 ◽  
Vol 24 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Satomi Shiodera ◽  
Joeni S. Rahajoe ◽  
Takashi Kohyama

Abstract:The relationship between leaf longevity and other leaf traits was compared among different life-form categories (trees, herbs, climbers and epiphytes) of 101 plant species in a tropical montane forest on Mt. Halimun, West Java, Indonesia. We applied the Cox proportional hazards regression to estimate the leaf longevity of each species from 30 mo of census data. We examined whether estimated longevity was explained by either species life-form categories, taxonomic groupings (eudicots, monocots, magnoliids and chloranthales, and ferns) or such leaf traits as leaf area, leaf mass per area (LMA), mass-based leaf nitrogen, penetrometer reading, condensed-tannin-free total phenolics and condensed tannin. There was a wide-ranged interspecific variation in leaf longevity, mostly 10–50 mo, similarly across life-form categories. LMA showed a strong positive influence on leaf longevity. We found that relationships between leaf longevity and some leaf traits were different among various life forms. Trees tended to have high LMA, while climbers tended to have low LMA at the same leaf longevity. We hypothesize that such difference among life forms reflects shoot architecture characteristics. Multi-shoot trees with branching architecture need to have self-supporting leaves, whereas semi-epiphytic climbers can maintain relatively low biomass investment to leaves hanging or relying upon the mechanical support from host plants.

2008 ◽  
Vol 38 (6) ◽  
pp. 1603-1610 ◽  
Author(s):  
Masahiro Nakamura ◽  
Tetsuji Hina ◽  
Eri Nabeshima ◽  
Tsutom Hiura

Within a canopy, spatial variation in leaf traits may be determined by light and nutrient availabilities. Such environmentally caused changes in leaf traits may be an important cause of changes in leaf palatability to herbivores. We conducted a factorial experiment with fertilization and selective cutting in a northern Japanese forest dominated by oak ( Quercus crispula Blume). Fertilization increased the nitrogen content of upper canopy leaves. Leaf mass per area (LMA) was greater in the upper canopy than in the lower canopy. Selective cutting and all interactions had significant effects on LMA. Total phenolics and condensed tannin in leaves were also greater in the upper canopy than in the lower canopy. The interaction of selective cutting × position in the canopy (upper or lower) had a significant effect on total phenolics; a similar trend was seen for condensed tannin. Herbivory was greater in the lower canopy than in the upper canopy. Also, fertilization increased herbivory, whereas selective cutting decreased it. These results imply that human activities, such as logging and nitrogen deposition, may strongly influence spatial variation in herbivory through changes in leaf traits.


2021 ◽  
Author(s):  
◽  
Sharada Paudel

<p>The phenologies of flowers, fruits and leaves can have profound implications for plant community structure and function. Despite this only a few studies have documented fruit and flower phenologies in New Zealand while there are even fewer studies on leaf production and abscission phenologies. To address this limitation, I measured phenological patterns in leaves, flowers and fruits in 12 common forest plant species in New Zealand over two years. All three phenologies showed significant and consistent seasonality with an increase in growth and reproduction around the onset of favourable climatic conditions; flowering peaked in early spring, leaf production peaked in mid-spring and fruit production peaked in mid-summer coincident with annual peaks in temperature and photoperiodicity. Leaf abscission, however, occurred in late autumn, coincident with the onset of less productive environmental conditions. I also investigated differences in leaf longevities and assessed how seasonal cycles in the timing of leaf production and leaf abscission times might interact with leaf mass per area (LMA) in determining leaf longevity. Leaf longevity was strongly associated with LMA but also with seasonal variation in climate. All 12 species produced leaves in spring and abscised leaves in autumn. Nevertheless, leaf longevity ranged from 6 months to 30 months among species, leading to several distinct leaf longevity categories (i.e. 6-7 months, 15-18 months and 27-30 months). Finally, I examined the relationship of leaf traits with flower and fruit traits and their relation to the global leaf economic spectrum (LES) that describes multivariate correlations between a combinations of key leaf traits. The results resonated with the patterns of leaf economic spectrum for New Zealand species and provided evidence for significant correlations between leaf and fruit traits, indicating that plants with long lived leaves and higher LMA produce fruits that take more time to develop, stay on the plant longer and have larger seed size. This study contributed to bridging the gap in our understanding of the relationship between vegetative and reproductive traits, it has increased our understanding of phenological patterns in New Zealand forests, and when viewed with earlier phenological studies, provides a first step towards understanding how New Zealand forest might respond to global climate change. In addition, the research illustrates how seasonality in climate can constrain the life times of leaves. In the context of global trait research culminating into the whole plant economics spectrum, this study provides clear evidence of leaf and fruit phenological and morphological trait associations. It helps to further our understanding of phenology, seasonality and plant trait relationships for some common tree species in New Zealand and presents some novel findings that provide a basis for future research.</p>


2006 ◽  
Vol 22 (5) ◽  
pp. 599-604 ◽  
Author(s):  
Koichi Takahashi ◽  
Yumi Mikami

Leaf phenology and leaf traits of the fern Oleandra pistillaris were examined in relation to canopy cover (open and understorey) and seasonal reduction in rainfall in a wet tropical montane forest, Indonesia. Although the annual rainfall is high, rainfall is relatively less in June and July. Stomatal density and diameter were greater in the open than in the understorey (229 versus 167 mm−2 for stomatal density and 33 versus 29 μm for stomatal diameter). The stable carbon isotope ratio (δ13C) of leaves, positively correlated with water use efficiency, was higher in the open than in the understorey (mean δ13C −30 versus −33‰). Therefore, it is considered that leaves have high gas-exchange capacities per leaf area in the open where water availability would be limited, compared with the understorey. In contrast, leaf mass per area (LMA) was lower and leaf life span was longer in the understorey than in the open (25 versus 34 g m−2 for LMA and 2.1 and 1.6 y for leaf life span). These thin leaves with a long life span in the understorey would contribute to efficient light capture and photosynthetic production per leaf mass. The number of leaves per stem decreased during the period with less rainfall in both the open and understorey conditions, which should reduce the water loss from plants, but increased again after the period with less rainfall. Stem growth rate was higher in the open than in the understorey, and the seasonal reduction in rainfall hardly affected stem growth rate in either open or understorey conditions. This study concludes that O. pistillaris responds to canopy cover and seasonal reduction in rainfall by adjusting leaf traits and leaf phenology, respectively.


Trees ◽  
2012 ◽  
Vol 26 (5) ◽  
pp. 1495-1512 ◽  
Author(s):  
Yigremachew Seyoum ◽  
Masresha Fetene ◽  
Simone Strobl ◽  
Erwin Beck

2021 ◽  
Author(s):  
◽  
Sharada Paudel

<p>The phenologies of flowers, fruits and leaves can have profound implications for plant community structure and function. Despite this only a few studies have documented fruit and flower phenologies in New Zealand while there are even fewer studies on leaf production and abscission phenologies. To address this limitation, I measured phenological patterns in leaves, flowers and fruits in 12 common forest plant species in New Zealand over two years. All three phenologies showed significant and consistent seasonality with an increase in growth and reproduction around the onset of favourable climatic conditions; flowering peaked in early spring, leaf production peaked in mid-spring and fruit production peaked in mid-summer coincident with annual peaks in temperature and photoperiodicity. Leaf abscission, however, occurred in late autumn, coincident with the onset of less productive environmental conditions. I also investigated differences in leaf longevities and assessed how seasonal cycles in the timing of leaf production and leaf abscission times might interact with leaf mass per area (LMA) in determining leaf longevity. Leaf longevity was strongly associated with LMA but also with seasonal variation in climate. All 12 species produced leaves in spring and abscised leaves in autumn. Nevertheless, leaf longevity ranged from 6 months to 30 months among species, leading to several distinct leaf longevity categories (i.e. 6-7 months, 15-18 months and 27-30 months). Finally, I examined the relationship of leaf traits with flower and fruit traits and their relation to the global leaf economic spectrum (LES) that describes multivariate correlations between a combinations of key leaf traits. The results resonated with the patterns of leaf economic spectrum for New Zealand species and provided evidence for significant correlations between leaf and fruit traits, indicating that plants with long lived leaves and higher LMA produce fruits that take more time to develop, stay on the plant longer and have larger seed size. This study contributed to bridging the gap in our understanding of the relationship between vegetative and reproductive traits, it has increased our understanding of phenological patterns in New Zealand forests, and when viewed with earlier phenological studies, provides a first step towards understanding how New Zealand forest might respond to global climate change. In addition, the research illustrates how seasonality in climate can constrain the life times of leaves. In the context of global trait research culminating into the whole plant economics spectrum, this study provides clear evidence of leaf and fruit phenological and morphological trait associations. It helps to further our understanding of phenology, seasonality and plant trait relationships for some common tree species in New Zealand and presents some novel findings that provide a basis for future research.</p>


Erdkunde ◽  
2009 ◽  
Vol 63 (4) ◽  
pp. 347-364 ◽  
Author(s):  
Claudia Dislich ◽  
Sven Günter ◽  
Jürgen Homeier ◽  
Boris Schröder ◽  
Andreas Huth

Author(s):  
Hammad A Khan ◽  
Yukiko Nakamura ◽  
Robert T Furbank ◽  
John R Evans

Abstract A growing number of leaf traits can be estimated from hyperspectral reflectance data. These include structural and compositional traits, such as leaf mass per area (LMA) and nitrogen and chlorophyll content, but also physiological traits such a Rubisco carboxylation activity, electron transport rate, and respiration rate. Since physiological traits vary with leaf temperature, how does this impact on predictions made from reflectance measurements? We investigated this with two wheat varieties, by repeatedly measuring each leaf through a sequence of temperatures imposed by varying the air temperature in a growth room. Leaf temperatures ranging from 20 °C to 35 °C did not alter the estimated Rubisco capacity normalized to 25 °C (Vcmax25), or chlorophyll or nitrogen contents per unit leaf area. Models estimating LMA and Vcmax25/N were both slightly influenced by leaf temperature: estimated LMA increased by 0.27% °C–1 and Vcmax25/N increased by 0.46% °C–1. A model estimating Rubisco activity closely followed variation associated with leaf temperature. Reflectance spectra change with leaf temperature and therefore contain a temperature signal.


Sign in / Sign up

Export Citation Format

Share Document