Electrospun phospholipid nanofibers encapsulated with cinnamaldehyde/HP-β-CD inclusion complex as a novel food packaging material

2021 ◽  
Vol 28 ◽  
pp. 100647
Author(s):  
Changzhu Li ◽  
Wenqing Chen ◽  
Subramanian Siva ◽  
Haiying Cui ◽  
Lin Lin
2017 ◽  
Vol 43 ◽  
pp. 216-222 ◽  
Author(s):  
Jen-Yi Huang ◽  
Janelle Limqueco ◽  
Yu Yuan Chieng ◽  
Xu Li ◽  
Weibiao Zhou

Author(s):  
Sudip Ray ◽  
Siew Young Quek ◽  
Allan Easteal ◽  
Xiao Dong Chen

With today's advancement in nanotechnology, Polymer-Clay Nanocomposite has emerged as a novel food packaging material due to its several benefits such as enhanced mechanical, thermal and barrier properties. This article discusses the potential use of these polymer composites as novel food packaging materials with emphasis on preparation, characterization, properties, recent developments and future prospects.


2017 ◽  
pp. 139-154
Author(s):  
Khalid Gul ◽  
Haroon Wani ◽  
Preeti Singh ◽  
Idrees Wani ◽  
Ali Wani

2019 ◽  
Vol 25 (4) ◽  
pp. 506-514 ◽  
Author(s):  
Himanshu Gupta ◽  
Harish Kumar ◽  
Mohit Kumar ◽  
Avneesh Kumar Gehlaut ◽  
Ankur Gaur ◽  
...  

The current study stresses on the reuse of waste lignocellulose biomass (rice husk and sugarcane bagasse) for the synthesis of carboxymethyl cellulose (CMC) and further conversion of this CMC into a biodegradable film. Addition of commercial starch was done to form biodegradable film due to its capacity to form a continuous matrix. Plasticizers such as Glycerol and citric acid were used to provide flexibility and strength to the film. Biopolymer film obtained from sugarcane bagasse CMC showed maximum tensile strength and elongation in comparison to the film synthesized from commercial CMC and CMC obtained from rice husk. It has been observed that an increase in sodium glycolate/NaCl content in CMC imposed an adverse effect on tensile strength. Opacity, moisture content, and solubility of the film increased with a rise in the degree of substitution of CMC. Therefore, CMC obtained from sugarcane bagasse was better candidate in preparing biopolymer/biocomposite film.


2010 ◽  
Vol 113-116 ◽  
pp. 2333-2336 ◽  
Author(s):  
Chun Wei Li ◽  
Xue Song Jiang ◽  
Qun Li Zhang ◽  
Shu Yan Xu ◽  
Gui Ying Wang

Food Packaging material requires an excellent barrier ability to humidity and oxygen.SiOx barrier thin film deposited on high polymer substrate can compare beauty with aluminum foil in the barrier quality,even more SiOx barrier thin film is obviously allowing microwave permeating directly and it also provide a chance for merchant to vision their production in shelf life.SiOx film as barrier packaging material is becoming a high light.The current status and research progress of new type high barrier thin film packaging material were overviewed and production technology was introduced. The various influencing factors were discussed, including background vacuum, reactive gases, and pretreatment of the substrate surface and properties.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9569-9574
Author(s):  
Marta Kaźmierczak ◽  
Tomasz P. Olejnik ◽  
Magdalena Kmiotek

In some respects the safest food packaging material is paper that is completely free of chemical additives, made only from primary cellulosic fibers. There is no information in the literature on giving paper barrier properties using nanocellulose without any additives, especially bacterial cellulose, by applying a coating to a fibrous semi-product. In order to prepare paper-layered composites, paper sheets made of beaten or non-beaten softwood or hardwood cellulose pulp, or their 50/50 (wt./wt.) mix, were used in the experiment. After the application of bacterial cellulose onto the sheets, the paper became completely impermeable to air, which means that fine microbial fibers had filled the voids (pores) between plant cellulose fibers. The results of the experiment could be regarded as a perfect, biodegradable packaging material.


Sign in / Sign up

Export Citation Format

Share Document