Acute Ozone Exposures Result in Site-Specific Airway Injury and Mitochondrial Damage

2011 ◽  
Vol 51 ◽  
pp. S115-S116
Author(s):  
Katherine L. Tuggle ◽  
Jessica Fetterman ◽  
David Westbrook ◽  
Scott Ballinger ◽  
Edward M. Postlethwait ◽  
...  
Author(s):  
Katherine L. Tuggle ◽  
Jessica L. Fetterman ◽  
David G. Westbrook ◽  
Scott W. Ballinger ◽  
Edward M. Postlethwait ◽  
...  

2012 ◽  
Vol 303 (12) ◽  
pp. L1079-L1086 ◽  
Author(s):  
Jeffrey D. Brand ◽  
Carol A. Ballinger ◽  
Katherine L. Tuggle ◽  
Michelle V. Fanucchi ◽  
Lisa M. Schwiebert ◽  
...  

Pulmonary dendritic cells (DCs) are among the first responders to inhaled environmental stimuli such as ozone (O3), which has been shown to activate these cells. O3 reacts with epithelial lining fluid (ELF) components in an anatomically site-specific manner dictated by O3 concentration, airway flow patterns, and ELF substrate concentration. Accordingly, the anatomical distribution of ELF reaction products and airway injury are hypothesized to produce selective DC maturation differentially within the airways. To investigate how O3 affects regional airway DC populations, we utilized a model of O3-induced pulmonary inflammation, wherein C57BL/6 mice were exposed to 0.8 ppm O3 8 h/day for 1, 3, and 5 days. This model induced mild inflammation and no remarkable epithelial injury. Tracheal, but not more distant airway sites, and mediastinal lymph node (MLN) DC numbers were increased significantly after the third exposure day. The largest increase in each tissue was of the CD103+ DC phenotype. After 3 days of exposure, fewer DCs expressed CD80, CD40, and CCR7, and, at this same time point, total MLN T cell numbers increased. Together, these data demonstrate that O3 exposure induced site-specific and phenotype changes in the pulmonary and regional lymph node DC populations. Possibly contributing to ozone-mediated asthma perturbation, the phenotypic changes to DCs within pulmonary regions may alter responses to antigenic stimuli. Decreased costimulatory molecule expression within the MLN suggests induction of tolerance mechanisms; increased tracheal DC number may raise the potential for allergic sensitization and asthmatic exacerbation, thus overcoming O3-induced decrements in costimulatory molecule expression.


Author(s):  
Richard D. Powell ◽  
James F. Hainfeld ◽  
Carol M. R. Halsey ◽  
David L. Spector ◽  
Shelley Kaurin ◽  
...  

Two new types of covalently linked, site-specific immunoprobes have been prepared using metal cluster labels, and used to stain components of cells. Combined fluorescein and 1.4 nm “Nanogold” labels were prepared by using the fluorescein-conjugated tris (aryl) phosphine ligand and the amino-substituted ligand in the synthesis of the Nanogold cluster. This cluster label was activated by reaction with a 60-fold excess of (sulfo-Succinimidyl-4-N-maleiniido-cyclohexane-l-carboxylate (sulfo-SMCC) at pH 7.5, separated from excess cross-linking reagent by gel filtration, and mixed in ten-fold excess with Goat Fab’ fragments against mouse IgG (obtained by reduction of F(ab’)2 fragments with 50 mM mercaptoethylamine hydrochloride). Labeled Fab’ fragments were isolated by gel filtration HPLC (Superose-12, Pharmacia). A combined Nanogold and Texas Red label was also prepared, using a Nanogold cluster derivatized with both and its protected analog: the cluster was reacted with an eight-fold excess of Texas Red sulfonyl chloride at pH 9.0, separated from excess Texas Red by gel filtration, then deprotected with HC1 in methanol to yield the amino-substituted label.


2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


1987 ◽  
Vol 48 (C9) ◽  
pp. C9-741-C9-744 ◽  
Author(s):  
W. HABENICHT ◽  
L. A. CHEWTER ◽  
M. SANDER ◽  
K. MÜLLER-DETHLEFS ◽  
E. W. SCHLAG

Sign in / Sign up

Export Citation Format

Share Document