The Temporal Patterns Of Ozone-Induced Site-Specific Airway Injury And Mitochondrial Damage Are Age-Dependent

Author(s):  
Katherine L. Tuggle ◽  
Jessica L. Fetterman ◽  
David G. Westbrook ◽  
Scott W. Ballinger ◽  
Edward M. Postlethwait ◽  
...  
2011 ◽  
Vol 51 ◽  
pp. S115-S116
Author(s):  
Katherine L. Tuggle ◽  
Jessica Fetterman ◽  
David Westbrook ◽  
Scott Ballinger ◽  
Edward M. Postlethwait ◽  
...  

2006 ◽  
Vol 14 (7S_Part_23) ◽  
pp. P1228-P1228
Author(s):  
Marcela Ines Cespedes ◽  
James M. McGree ◽  
Christopher C. Drovandi ◽  
Kerrie Mengersen ◽  
James D. Doecke ◽  
...  

Thorax ◽  
2006 ◽  
Vol 61 (11) ◽  
pp. 986-991 ◽  
Author(s):  
T Tschernig ◽  
V C de Vries ◽  
A S Debertin ◽  
A Braun ◽  
T Walles ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Assraa Hassan Jassim ◽  
Denise M. Inman ◽  
Claire H. Mitchell

Mitochondrial dysfunction and excessive inflammatory responses are both sufficient to induce pathology in age-dependent neurodegenerations. However, emerging evidence indicates crosstalk between damaged mitochondrial and inflammatory signaling can exacerbate issues in chronic neurodegenerations. This review discusses evidence for the interaction between mitochondrial damage and inflammation, with a focus on glaucomatous neurodegeneration, and proposes that positive feedback resulting from this crosstalk drives pathology. Mitochondrial dysfunction exacerbates inflammatory signaling in multiple ways. Damaged mitochondrial DNA is a damage-associated molecular pattern, which activates the NLRP3 inflammasome; priming and activation of the NLRP3 inflammasome, and the resulting liberation of IL-1β and IL-18 via the gasdermin D pore, is a major pathway to enhance inflammatory responses. The rise in reactive oxygen species induced by mitochondrial damage also activates inflammatory pathways, while blockage of Complex enzymes is sufficient to increase inflammatory signaling. Impaired mitophagy contributes to inflammation as the inability to turnover mitochondria in a timely manner increases levels of ROS and damaged mtDNA, with the latter likely to stimulate the cGAS-STING pathway to increase interferon signaling. Mitochondrial associated ER membrane contacts and the mitochondria-associated adaptor molecule MAVS can activate NLRP3 inflammasome signaling. In addition to dysfunctional mitochondria increasing inflammation, the corollary also occurs, with inflammation reducing mitochondrial function and ATP production; the resulting downward spiral accelerates degeneration. Evidence from several preclinical models including the DBA/2J mouse, microbead injection and transient elevation of IOP, in addition to patient data, implicates both mitochondrial damage and inflammation in glaucomatous neurodegeneration. The pressure-dependent hypoxia and the resulting metabolic vulnerability is associated with mitochondrial damage and IL-1β release. Links between mitochondrial dysfunction and inflammation can occur in retinal ganglion cells, microglia cells and astrocytes. In summary, crosstalk between damaged mitochondria and increased inflammatory signaling enhances pathology in glaucomatous neurodegeneration, with implications for other complex age-dependent neurodegenerations like Alzheimer’s and Parkinson’s disease.


2012 ◽  
Vol 303 (12) ◽  
pp. L1079-L1086 ◽  
Author(s):  
Jeffrey D. Brand ◽  
Carol A. Ballinger ◽  
Katherine L. Tuggle ◽  
Michelle V. Fanucchi ◽  
Lisa M. Schwiebert ◽  
...  

Pulmonary dendritic cells (DCs) are among the first responders to inhaled environmental stimuli such as ozone (O3), which has been shown to activate these cells. O3 reacts with epithelial lining fluid (ELF) components in an anatomically site-specific manner dictated by O3 concentration, airway flow patterns, and ELF substrate concentration. Accordingly, the anatomical distribution of ELF reaction products and airway injury are hypothesized to produce selective DC maturation differentially within the airways. To investigate how O3 affects regional airway DC populations, we utilized a model of O3-induced pulmonary inflammation, wherein C57BL/6 mice were exposed to 0.8 ppm O3 8 h/day for 1, 3, and 5 days. This model induced mild inflammation and no remarkable epithelial injury. Tracheal, but not more distant airway sites, and mediastinal lymph node (MLN) DC numbers were increased significantly after the third exposure day. The largest increase in each tissue was of the CD103+ DC phenotype. After 3 days of exposure, fewer DCs expressed CD80, CD40, and CCR7, and, at this same time point, total MLN T cell numbers increased. Together, these data demonstrate that O3 exposure induced site-specific and phenotype changes in the pulmonary and regional lymph node DC populations. Possibly contributing to ozone-mediated asthma perturbation, the phenotypic changes to DCs within pulmonary regions may alter responses to antigenic stimuli. Decreased costimulatory molecule expression within the MLN suggests induction of tolerance mechanisms; increased tracheal DC number may raise the potential for allergic sensitization and asthmatic exacerbation, thus overcoming O3-induced decrements in costimulatory molecule expression.


2017 ◽  
Vol 112 (4) ◽  
pp. 338-342
Author(s):  
Brooke H. Stagich ◽  
Kelsey R. Moore ◽  
Joseph R. Newton ◽  
Kenneth L. Dixon ◽  
G. Timothy Jannik

Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
Richard D. Powell ◽  
James F. Hainfeld ◽  
Carol M. R. Halsey ◽  
David L. Spector ◽  
Shelley Kaurin ◽  
...  

Two new types of covalently linked, site-specific immunoprobes have been prepared using metal cluster labels, and used to stain components of cells. Combined fluorescein and 1.4 nm “Nanogold” labels were prepared by using the fluorescein-conjugated tris (aryl) phosphine ligand and the amino-substituted ligand in the synthesis of the Nanogold cluster. This cluster label was activated by reaction with a 60-fold excess of (sulfo-Succinimidyl-4-N-maleiniido-cyclohexane-l-carboxylate (sulfo-SMCC) at pH 7.5, separated from excess cross-linking reagent by gel filtration, and mixed in ten-fold excess with Goat Fab’ fragments against mouse IgG (obtained by reduction of F(ab’)2 fragments with 50 mM mercaptoethylamine hydrochloride). Labeled Fab’ fragments were isolated by gel filtration HPLC (Superose-12, Pharmacia). A combined Nanogold and Texas Red label was also prepared, using a Nanogold cluster derivatized with both and its protected analog: the cluster was reacted with an eight-fold excess of Texas Red sulfonyl chloride at pH 9.0, separated from excess Texas Red by gel filtration, then deprotected with HC1 in methanol to yield the amino-substituted label.


Sign in / Sign up

Export Citation Format

Share Document