Mitochondrial ascorbic acid transport is mediated by a low-affinity form of the sodium-coupled ascorbic acid transporter-2

2014 ◽  
Vol 70 ◽  
pp. 241-254 ◽  
Author(s):  
Carola Muñoz-Montesino ◽  
Francisco J. Roa ◽  
Eduardo Peña ◽  
Mauricio González ◽  
Kirsty Sotomayor ◽  
...  
1995 ◽  
Vol 268 (6) ◽  
pp. C1430-C1439 ◽  
Author(s):  
R. T. Franceschi ◽  
J. X. Wilson ◽  
S. J. Dixon

Ascorbic acid is necessary for expression of the osteoblast phenotype. We examined whether Na(+)-dependent transport is required for MC3T3-E1 preosteoblast cells to respond to vitamin C and investigated the role of membrane transport in the intracellular accumulation and function of ascorbate. MC3T3-E1 cells were found to possess a saturable, stereoselective, Na(+)-dependent ascorbic acid transport activity that is sensitive to the transport inhibitors sulfinpyrazone, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, and phloretin. Transport activity showed no competition with glucose or 2-deoxyglucose and was not inhibited by cytochalasin B, indicating that it is distinct from known hexose transporters. On addition of 100 microM ascorbic acid to the extracellular medium, intracellular concentrations of 10 mM were reached within 5-10 h and remained constant for up to 24 h. A good correlation was observed between intracellular ascorbic acid concentration and rate of hydroxyproline synthesis. Although ascorbic acid was transported preferentially compared with D-isoascorbic acid, both isomers had equivalent activity in stimulating hydroxyproline formation once they entered cells. Marked stereoselectivity for extracellular L-ascorbic acid relative to D-isoascorbic acid was also seen when alkaline phosphatase and total hydroxyproline were measured after 6 days in culture. Moreover, ascorbic acid transport inhibitors that prevented intracellular accumulation of vitamin blocked the synthesis of hydroxyproline. Thus Na(+)-dependent ascorbic acid transport is required for MC3T3-E1 cells to achieve the millimolar intracellular vitamin C concentrations necessary for maximal prolyl hydroxylase activity and expression of the osteoblast phenotype.


1996 ◽  
Vol 54 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Biljana Musicki ◽  
Pinar H. Kodaman ◽  
Raymond F. Aten ◽  
Harold R. Behrman

Endocrinology ◽  
1980 ◽  
Vol 106 (3) ◽  
pp. 811-817 ◽  
Author(s):  
FRANCES M. FINN ◽  
PHILLIP A. JOHNS

1964 ◽  
Vol 92 (3) ◽  
pp. 564-573 ◽  
Author(s):  
SK Sharma ◽  
RM Johnstone ◽  
JH Quastel

1995 ◽  
Vol 317 (1) ◽  
pp. 208-214 ◽  
Author(s):  
P. Bergsten ◽  
R. Yu ◽  
J. Kehrl ◽  
M. Levine

1993 ◽  
Vol 294 (2) ◽  
pp. 505-510 ◽  
Author(s):  
R W Welch ◽  
P Bergsten ◽  
J D Butler ◽  
M Levine

As the initial step in the use of fibroblasts as a model system for ‘in situ kinetics’, ascorbic acid (vitamin C) accumulation in normal human fibroblasts was investigated for the first time. Ascorbic acid was transported into fibroblasts and accumulated against a concentration gradient up to 20-fold, as measured by h.p.l.c. with coulometric electrochemical detection. Ascorbic acid accumulation was mediated by two concentration-dependent transport activities. The first was a high-affinity activity with an apparent Km of 6 microM and an apparent Vmax. of 203 microM/h, and the second was a low-affinity activity with an apparent Km of 5 mM and an apparent Vmax. of 1.8 mM/h. Both activities were inhibited by metabolic inhibitors and inhibitors of ascorbic acid transport in human neutrophils. The low-affinity transporter could not be accounted for by diffusion. Although the high-affinity transport activity was comparable with that described for human neutrophils, the low-affinity transporter was different. These data provide the first evidence that two-component ascorbic acid transport may be a generalized mechanism for accumulation of this vitamin in humans.


Sign in / Sign up

Export Citation Format

Share Document