Cis-regulatory elements involved in species-specific transcriptional regulation of the SVCT1 gene in rat and human hepatoma cells

2015 ◽  
Vol 85 ◽  
pp. 183-196 ◽  
Author(s):  
Alejandra Muñoz ◽  
Marcelo Villagrán ◽  
Paula Guzmán ◽  
Carlos Solíz ◽  
Marcell Gatica ◽  
...  
1990 ◽  
Vol 10 (11) ◽  
pp. 5967-5976
Author(s):  
H Baumann ◽  
K K Morella ◽  
G P Jahreis ◽  
S Marinković

The transcription rate of the haptoglobin (Hp) gene is stimulated by interleukin-1 (IL-1), IL-6, and dexamethasone in rat hepatoma (H-35) cells. To identify the cis-acting regulatory elements responsive to these hormones, various lengths of 5' Hp gene-flanking regions, including the promoter, were inserted into chloramphenicol acetyltransferase gene expression vectors and transiently introduced into H-35 cells. The first 4 kb of 5' region mediated a severalfold increase in expression after treatment with IL-6 and dexamethasone. No response to IL-1 was detectable. When, however, upstream sequences were deleted to position -165 relative to the transcription start site, a significant stimulation by IL-1 was gained without appreciably affecting the IL-6 response. With the apparent removal of an inhibitory sequence, the promoter-proximal 165-bp region also displayed a severalfold enhanced response to the combination of dexamethasone, IL-1, and IL-6. The sequence from -165 to -147, termed the A-element, was found to be crucial for all hormone regulatory functions. Two copies of the A-element linked to a heterologous promoter responded to the three hormones, but to a lesser degree than in the Hp gene promoter context. The regulatory elements of the rat Hp gene were similarly active in human hepatoma cells. Optimal regulation by IL-6 in HepG2 cells was, however, independent of the A-element. The A-element functioned in these cells exclusively as an IL-1 response sequence. The results suggest that genomic sequences upstream of the rat Hp gene suppress the regulation by specific cytokines more prominently in transient expression assays than in the normal chromosomal context. Moreover, the functional comparison indicated that specific regulatory regions of the rat Hp gene do not function identically in different hepatic cell types.


BPB Reports ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 113-118
Author(s):  
Akiho Shima ◽  
Hiroshi Matsuoka ◽  
Kaoruko Miya ◽  
Akihiro Michihara

2015 ◽  
Vol 30 (1) ◽  
pp. 348-354 ◽  
Author(s):  
N. Ponce-Ruiz ◽  
A.E. Rojas-García ◽  
B.S. Barrón-Vivanco ◽  
G. Elizondo ◽  
Y.Y. Bernal-Hernández ◽  
...  

1990 ◽  
Vol 10 (11) ◽  
pp. 5967-5976 ◽  
Author(s):  
H Baumann ◽  
K K Morella ◽  
G P Jahreis ◽  
S Marinković

The transcription rate of the haptoglobin (Hp) gene is stimulated by interleukin-1 (IL-1), IL-6, and dexamethasone in rat hepatoma (H-35) cells. To identify the cis-acting regulatory elements responsive to these hormones, various lengths of 5' Hp gene-flanking regions, including the promoter, were inserted into chloramphenicol acetyltransferase gene expression vectors and transiently introduced into H-35 cells. The first 4 kb of 5' region mediated a severalfold increase in expression after treatment with IL-6 and dexamethasone. No response to IL-1 was detectable. When, however, upstream sequences were deleted to position -165 relative to the transcription start site, a significant stimulation by IL-1 was gained without appreciably affecting the IL-6 response. With the apparent removal of an inhibitory sequence, the promoter-proximal 165-bp region also displayed a severalfold enhanced response to the combination of dexamethasone, IL-1, and IL-6. The sequence from -165 to -147, termed the A-element, was found to be crucial for all hormone regulatory functions. Two copies of the A-element linked to a heterologous promoter responded to the three hormones, but to a lesser degree than in the Hp gene promoter context. The regulatory elements of the rat Hp gene were similarly active in human hepatoma cells. Optimal regulation by IL-6 in HepG2 cells was, however, independent of the A-element. The A-element functioned in these cells exclusively as an IL-1 response sequence. The results suggest that genomic sequences upstream of the rat Hp gene suppress the regulation by specific cytokines more prominently in transient expression assays than in the normal chromosomal context. Moreover, the functional comparison indicated that specific regulatory regions of the rat Hp gene do not function identically in different hepatic cell types.


1989 ◽  
Vol 264 (1) ◽  
pp. 266-271
Author(s):  
H Nakabayashi ◽  
K Watanabe ◽  
A Saito ◽  
A Otsuru ◽  
K Sawadaishi ◽  
...  

MicroRNA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64-69 ◽  
Author(s):  
KumChol Ri ◽  
Chol Kim ◽  
CholJin Pak ◽  
PhyongChol Ri ◽  
HyonChol Om

Background: Recent studies have attempted to elucidate the function of super enhancers by means of microRNAs. Although the functional outcomes of miR-1301 have become clearer, the pathways that regulate the expressions of miR-1301 remain unclear. Objective: The objective of this paper was to consider the pathway regulating expression of miR- 1301 and miR-1301 signaling pathways with the inhibition of cell proliferation. Methods: In this study, we prepared the cell clones that the KLF6 super enhancer was deleted by means of the CRISPR/Cas9 system-mediated genetic engineering. Changes in miR-1301 expression after the deletion of the KLF6 super enhancer were evaluated by RT-PCR analysis, and the signal pathway of miR-1301 with inhibition of the cell proliferation was examined using RNA interference technology. Results: The results showed that miR-1301 expression was significantly increased after the deletion of the KLF6 super enhancer. Over-expression of miR-1301 induced by deletion of the KLF6 super enhancer also regulated the expression of p21 and p53 in human hepatoma cells. functional modeling of findings using siRNA specific to miR-1301 showed that expression level changes had direct biological effects on cellular proliferation in Human hepatoma cells. Furthermore, cellular proliferation assay was shown to be directly associated with miR-1301 levels. Conclusion: As a result, it was demonstrated that the over-expression of miR-1301 induced by the disruption of the KLF6 super enhancer leads to a significant inhibition of proliferation in HepG2 cells. Moreover, it was demonstrated that the KLF6 super enhancer regulates the cell-proliferative effects which are mediated, at least in part, by the induction of p21and p53 in a p53-dependent manner. Our results provide the functional significance of miR-1301 in understanding the transcriptional regulation mechanism of the KLF6 super enhancer.


Sign in / Sign up

Export Citation Format

Share Document