Platinum anti-cancer drugs: Free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect

2016 ◽  
Vol 95 ◽  
pp. 216-229 ◽  
Author(s):  
Clifford W. Fong
2000 ◽  
Vol 127 (1) ◽  
pp. 61-72 ◽  
Author(s):  
Corwin Hansch ◽  
Susan C. McKarns ◽  
Carr J. Smith ◽  
David J. Doolittle

Author(s):  
Zhiying Fan ◽  
Zhifan Wang ◽  
Ruoyi Shi ◽  
Yuanhua Wang

Unlike C-N bond formation with classical dirhodium(II)-nitrenoids as the key intermediate, dirhodium(II)-catalyzed 1,2-and 1,3-diamination reactions are realized by a free radical mechanism. A mechanistic study revealed that the reactions undergo...


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 446
Author(s):  
Seung-Cheol Jee ◽  
Min Kim ◽  
Kyeong Seok Kim ◽  
Hyung-Sik Kim ◽  
Jung-Suk Sung

Benzo[a]pyrene (B[a]P), a group 1 carcinogen, induces mutagenic DNA adducts. Myricetin is present in many natural foods with diverse biological activities, such as anti-oxidative and anti-cancer activities. The aim of this study was to investigate the protective effects of myricetin against B[a]P-induced toxicity. Treatment of B[a]P induced cytotoxicity on HepG2 cells, whereas co-treatment of myricetin with B[a]P reduced the formation of the B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE)-DNA adduct, which recovered cell viability. Furthermore, we found a protective effect of myricetin against B[a]P-induced genotoxicity in rats, via myricetin-induced inhibition of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and BPDE-DNA adduct formation in the liver, kidney, colon, and stomach tissue. This inhibition was more prominent in the liver than in other tissues. Correspondingly, myricetin regulated the phase I and II enzymes that inhibit B[a]P metabolism and B[a]P metabolites conjugated with DNA by reducing and inducing CYP1A1 and glutathione S-transferase (GST) expression, respectively. Taken together, this showed that myricetin attenuated B[a]P-induced genotoxicity via regulation of phase I and II enzymes. Our results suggest that myricetin is anti-genotoxic, and prevents oxidative DNA damage and BPDE-DNA adduct formation via regulation of phase I and II enzymes.


Sign in / Sign up

Export Citation Format

Share Document