growth of bacteria
Recently Published Documents


TOTAL DOCUMENTS

564
(FIVE YEARS 118)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Luisa A. Ikner ◽  
Charles P. Gerba

Antimicrobial surfaces and coatings have been available for many decades and have largely been designed to kill or prevent the growth of bacteria and fungi. Antiviral coatings have become of particular interest more recently during the COVID-19 pandemic as they are designed to act as continuously active disinfectants. The most studied antiviral coatings have been metal-based or are comprised of silane quaternary ammonium formulations. Copper and silver interact directly with proteins and nucleic acids, and influence the production of reactive free radicals. Titanium dioxide acts as a photocatalyst in the presence of water and oxygen to produce free radicals in the presence of UV light or visible light when alloyed with copper or silver. Silane quaternary ammonium formulations can be applied to surfaces using sprays or wipes, and are particularly effective against enveloped viruses. Continuously active disinfectants offer an extra barrier against fomite-mediated transmission of respiratory and enteric viruses to reduce exposure between routine disinfection and cleaning events. To take advantage of this technology, testing methods need to be standardized and the benefits quantified in terms of reduction of virus transmission.


2021 ◽  
Author(s):  
Brianna K. Finley ◽  
Rebecca L. Mau ◽  
Michaela Hayer ◽  
Bram W. Stone ◽  
Ember M. Morrissey ◽  
...  

AbstractSecondary minerals (clays and metal oxides) are important components of the soil matrix. Clay minerals affect soil carbon persistence and cycling, and they also select for distinct microbial communities. Here we show that soil mineral assemblages—particularly short-range order minerals—affect both bacterial community composition and taxon-specific growth. Three soils with different parent material and presence of short-range order minerals were collected from ecosystems with similar vegetation and climate. These three soils were provided with 18O-labeled water and incubated with or without artificial root exudates or pine needle litter. Quantitative stable isotope probing was used to determine taxon-specific growth. We found that the growth of bacteria varied among soils of different mineral assemblages but found the trend of growth suppression in the presence of short-range order minerals. Relative growth of bacteria declined with increasing concentration of short-range order minerals between 25–36% of taxa present in all soils. Carbon addition in the form of plant litter or root exudates weakly affected relative growth of taxa (p = 0.09) compared to the soil type (p < 0.01). However, both exudate and litter carbon stimulated growth for at least 34% of families in the soils with the most and least short-range order minerals. In the intermediate short-range order soil, fresh carbon reduced growth for more bacterial families than were stimulated. These results highlight how bacterial-mineral-substrate interactions are critical to soil organic carbon processing, and how growth variation in bacterial taxa in these interactions may contribute to soil carbon persistence and loss.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 251
Author(s):  
Oana-Cătălina Mocioiu ◽  
Irina Atkinson ◽  
Ana-Maria Mocioiu ◽  
Simona Neagu ◽  
Robert Ruginescu ◽  
...  

One of the current research objectives is the development of new films for the conservation of glass heritage objects. The value of historical glass objects is given by the technology and raw materials used in production as well as their transparency and color. Their colors are correlated with oxide composition rich in transitional metals, which decrease resistance of corrosive agents from the atmosphere. In this paper, SiO2-ZnO gels have been designed to protect historical glass objects. The sol–gel method used to obtain gels is a powerful tool for functionalizing different materials. An important functionalization is the antibacterial activity. By applying a gel, the coated material is able to decrease the growth of bacteria. After deposition, some gels must be strengthened by heat treatment. The effect of ZnO content (10 mol% and 20 mol%) on the properties of the studied gels was investigated by Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and antibacterial tests. Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, and the halotolerant bacterium, Virgibacillus halodenitrificans, isolated from a salt crystal from Unirea mine, Slănic Prahova, Romania, were used. The gel Gel 2 (SiO2-ZnO (20 mol%)) showed the best properties.


2021 ◽  
Vol 947 (1) ◽  
pp. 012022
Author(s):  
Vy Pham Ngoc Thuy ◽  
Tran Viet Hung ◽  
Phan Nguyen Truong Thang ◽  
Trung Dang-Bao ◽  
Tran Thi Kieu Anh

Abstract Preservatives are often utilized to prevent growth of bacteria and extend shell-life of personal care products (PCPs). This causes an increase in the number of cases of allergic contact dermatitis to preservatives. This study focused on the determination of two isothiazolinones (MI and MCI) in PCPs by HPLC-DAD. Different pretreatment methods were examined for different sample matrices. Recoveries were over 80% with %RSD < 6% in three studied sample matrices (wet tissue, shampoo and cream) at three different spiked levels. The method was applied to determine MI and MCI in 84 PCPs (shampoo, shower gel, cream, etc.) purchased in Ho Chi Minh City, Vietnam from March to July in 2021. MI and MCI were detected in some PCPs.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 236
Author(s):  
Haymanot Enawgaw ◽  
Tamrat Tesfaye ◽  
Kelem Tiessasie Yilma ◽  
Derseh Yilie Limeneh

Cellulose-based hydrogels were prepared by the extraction of cellulose from corncobs after the removal of lignin and hemicellulose with the use of alkali–acid treatment. Acrylate-based hydrogels presently available for personal hygiene uses are not biodegradable. In this study, a biodegradable cellulose-co-AMPS personal hygiene hydrogel was synthesized. The hydrogel was synthesized by graft co-polymerization of 2-acrylamido2-methyl propane sulfonic acid onto corncob cellulose by using potassium persulfate (KPS) as an initiator and borax decahydrate (Na2B4O7·10H2O) as a cross-linking agent. Structural and functional characteristics of the hydrogel such as swelling measurements, antimicrobial tests, FTIR spectra and thermogravimetric analysis were done. The hydrogel showed an average swelling ratio of 279.6 g/g to water and 83.3 g/g to a urine solution with a 97% gel fraction. The hydrogel displayed no clear inhibition zone and did not support the growth of bacteria, Gram-positive or -negative. The FT-IR spectra of the hydrogel confirmed the grafting of an AMPS co-polymer onto cellulose chains. The thermal properties of the hydrogel showed three-step degradation, with a complete degradation temperature of 575 °C.


Author(s):  
G. S. Sutharshan ◽  
N. P. Muralidharan

Introduction: An essential thing for human survival is food which provides nutritional support for the body or for pleasure. All the food used today has some preservatives, except our own garden plants. Preservatives prevent food spoilage from microorganisms but it will inhibit the growth of bacteria and fungi. Antimicrobial preservatives are the preservatives which inhibit the growth of fungi and bacteria. Methods of preserving foods have been used for centuries and include natural techniques such as smoking fish and meat as well as adding salts. Aim: The main aim of the study is to find the effects of preservatives added in cookies on intestinal bacteria. Materials and Method: Take a sample of 10 biscuits. Crush and mix 10 gms in 10 ml of sterile saline. soak for 30 mins and centrifuge and take the supernatant. Transfer 1 ml to each tube and add the selected organisms (lactobacilli). Add 10 microlitre of the selected organism (lactobacilli) to the supernatant. Hold for 30 mins and transfer 10 microlitre to BHI and count the CFU after incubation for 12 hours. Results and Discussion:  After 12 hrs of incubation, colonies are formed. Using colony counter app colonies are counted. Biscuits 4 showed the highest growth of colonies of 797. The control of the bacteria shows confluence growth where the unlimited colonies are formed. This indicates the presence of antimicrobial activity on preservatives added in biscuits. This antimicrobial activity affects the health of the oral cavity and intestine. Conclusion: From the above study, it is evident that the antimicrobial activity of preservatives that are added in biscuits could affect the health of oral cavity and intestine.


Author(s):  
Jennifer Lolitha C. ◽  
Manjula A. C. ◽  
Prathibha K. Y. ◽  
Keshamma E.

Rhizosphere, phylloplane and caulosphere is the region where a complex community of microbes, mainly bacteria and fungi are present. The microbe- plant interaction in these regions can be beneficial, neutral, variable, or deleterious for plant growth. The bacteria that exert beneficial effects on plant development are termed plant growth promoting bacteria. To isolate the bacteria from rhizosphere, phylloplane and caulosphere of brinjal (Solanum melongena L.). The seeds of 16 cultivars of brinjal (Solanum melongena L.) viz., Arka keshav, Arka shirish, Arka kusumaker, and IIHR accession numbers 389,386,387,377 Tc, BB44, 391, 433, 434, 427, 447, 448, 476 and 487 that were used in the initial screening experiment were obtained from the Department of Vegetable crops, IIHR, Hessaraghatta, Bangalore. Brinjal (Solanum melongena L.) plants of different varieties were collected from seven locations around Bangalore viz., Hessaraghatta, Yelahanka, Kengeri, Madi vala, Hebbal, Tirumalapura and Attibele were also screened for the presence of associative bacteria. Associative microorganisms isolated from the rhizosphere, phylloplane and shoot regions of brinjal (Solanum melongena L.), revealed the presence of three morphologically different colonies. 80% of 16 cultivars of the brinjal (Solanum melongena L.) screened showed the presence of associative bacterial colonies. In this study diazotrophic BBI were obtained from the rhizoplane, phylloplane and stem of 16 cultivars of brinjal (Solanum melongena L.) that were screened. The dominant pearl-colored colonies isolated from all varieties of brinjal plants that were screened was identified and showed maximum nitrogen fixing ability compared with that of the other colonies. The phylloplane of brinjal (Solanum melongena L.) plants from seven different locations around Bangalore showed the presence of the dominant pearl-colored colonies.  Moderate growth of bacteria was observed in root, stem and leaf bits sterilized up to 35 minutes. Even on surface sterilized roots which were homogenized and inoculated on growth media, dense growth of bacteria was observed there by establishing the presence of bacteria inside the root system. For the first time the presence of growth promoting bacteria on the rhizosphere and endorhizosphere of brinjal (Solanum Melongena L.) cultivars was established.


Toxics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 295
Author(s):  
Katarzyna Petka ◽  
Łukasz Wajda ◽  
Aleksandra Duda-Chodak

Acrylamide (AA) present in food is considered a harmful compound for humans, but it exerts an impact on microorganisms too. The aim of this study was to evaluate the impact of acrylamide (at conc. 0–10 µg/mL) on the growth of bacteria (Leuconostoc mesenteroides, Lactobacillus acidophilus LA-5) and yeasts (Saccharomyces cerevisiae, Kluyveromyces lactis var. lactis), which are used for food fermentation. Moreover, we decided to verify whether these microorganisms could utilise acrylamide as a nutritional compound. Our results proved that acrylamide can stimulate the growth of L. acidophilus and K. lactis. We have, to the best of our knowledge, reported for the first time that the probiotic strain of bacteria L. acidophilus LA-5 is able to utilise acrylamide as a source of carbon and nitrogen if they lack them in the environment. This is probably due to acrylamide degradation by amidases. The conducted response surface methodology indicated that pH as well as incubation time and temperature significantly influenced the amount of ammonia released from acrylamide by the bacteria. In conclusion, our studies suggest that some strains of bacteria present in milk fermented products can exert additional beneficial impact by diminishing the acrylamide concentration and hence helping to prevent against its harmful impact on the human body and other members of intestinal microbiota.


2021 ◽  
Vol 20 (1) ◽  
pp. 1-10
Author(s):  
Megga Ratnasari Pikoli ◽  
◽  
Pingkan Aditiawati ◽  
Dea Indriani Astuti ◽  
Akhmaloka Akhmaloka ◽  
...  

Efforts to reduce organic sulfur in coal are taken through biodesulfurization by using desulfurization bacteria to release covalently-bound sulfur from the coal matrix. Coal is a complex hydrocarbon material that requires collaboration from more than one type of bacteria in a consortium for desulfurization. The current study shows how the individual members of a bacterial consortium obtained directly from coal samples grew on the coal. Mineral medium containing sub-bituminous coal with a concentration of 10%, 15%, and 20% served as a carbon source and the only sulfur to support the consortium's growth. The examination included growth patterns, concentrations of dibenzothiophene as an organic sulfur representative, pH, and sulfate concentration as the sulfur product released into the medium. The growth of individual members of the consortium was observed for 336 h. The consortium grew in all three coal concentrations with slightly different cell growth patterns and the release of dibenzothiophene. Members of the consortium grew alternately and overlapped, which showed possible linkages or dependence on products and existence from the growth of other members. The existence of the primary strain Moraxella osloensis COK1 indicated that they played a role in the activities and growth of other members. The alternating growth is discussed to produce a hypothetical illustration of how several other members play in using sulfur in a well-known desulfurization pathway. In conclusion, this study provides a deeper insight into the value of consortium members individually but growing together while swarming coal as a complex resource to become low-sulfur coal.


2021 ◽  
Vol 30 (5) ◽  
pp. 454-469
Author(s):  
Maulidan Firdaus ◽  
◽  
Desy Nila Rahmana ◽  
Diah Fitri Carolina ◽  
Nisrina Rahma Firdausi ◽  
...  

Fish is a product that breaks down quickly due to biochemical reactions that cause a decrease in the quality of its nutritional and sensory values. Natural preservatives make fish safer for consumption than fish preserved with formalin. Edible coating is a preservative that can be eaten, can prevent biological, chemical and physical changes, is able to prevent mass transfer, acts as a moisture barrier, be contained antimicrobial/antibacterial and antioxidants, increases shelf life, as well as protects food from microbial contamination. Antimicrobial/antibacterial compounds added to edible coatings are able to inhibit food degradation and/or remodel toxic compounds such as free radicals. Antimicrobials can be obtained from plant extracts such as alkaloids, flavonoids, saponins, tannins, phenolic acids, and eugenol. These compounds can slow the growth of bacteria in fish namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus sp., Staphylococcus aureus, Psychrotrophic and Psychrophilic bacteria counts, Enterobacteriaceae, and lactic acid bacteria. This article reviews the application of various antibacterial compounds from various plants that are added to edible coatings as preservatives in fish.


Sign in / Sign up

Export Citation Format

Share Document