scholarly journals Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes

2017 ◽  
Vol 110 ◽  
pp. 261-269 ◽  
Author(s):  
Dean L. Kellogg ◽  
Karen M. McCammon ◽  
Kathryn S. Hinchee-Rodriguez ◽  
Martin L. Adamo ◽  
Linda J. Roman
2016 ◽  
Vol 310 (10) ◽  
pp. E838-E845 ◽  
Author(s):  
Yet Hoi Hong ◽  
Christine Yang ◽  
Andrew C. Betik ◽  
Robert S. Lee-Young ◽  
Glenn K. McConell

Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ+/+ and nNOSμ−/− mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ+/+ and nNOSμ−/−, respectively, P > 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ−/− mice, and exercise increased NOS activity only in nNOSμ+/+ mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg−1·min−1, P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ−/− than in nNOSμ+/+ mice ( P < 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ−/− mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ−/− mice may be due to compensatory increases in AMPK activation.


Nitric Oxide ◽  
2007 ◽  
Vol 16 (3) ◽  
pp. 331-338 ◽  
Author(s):  
Roberto M. Saraiva ◽  
Khalid M. Minhas ◽  
Meizi Zheng ◽  
Eleanor Pitz ◽  
Adriana Treuer ◽  
...  

2015 ◽  
Vol 118 (9) ◽  
pp. 1113-1121 ◽  
Author(s):  
Yet Hoi Hong ◽  
Tony Frugier ◽  
Xinmei Zhang ◽  
Robyn M. Murphy ◽  
Gordon S. Lynch ◽  
...  

Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ−/−and nNOSμ+/+mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor NG-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ−/−and nNOSμ+/+mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (∼4%) were detected in muscles from nNOSμ−/−mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.


2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Andrew M. Roberts ◽  
David Lominadze ◽  
Sujith Dassanayaka ◽  
Leroy R. Sachleben ◽  
Charla L. Juniel ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jing Gong ◽  
Qi-Hang Tai ◽  
Guang-Xiao Xu ◽  
Xue-Ting Wang ◽  
Jing-Li Zhu ◽  
...  

Background. Brain injury is the leading cause of death following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Ac2-26 and endothelial nitric oxide synthase (eNOS) have been shown to reduce neuroinflammation. This study is aimed at determining the mechanism by which Ac2-26 protects against inflammation during brain injury following CA and CPR. Methods. Sixty-four rats were randomized into sham, saline, Ac2-26, and Ac2-26+L-NIO (endothelial nitric oxide synthase (eNOS) inhibitor) groups. Rats received Ac2-26, Ac2-26+L-NIO, or saline after CPR. Neurologic function was assessed at baseline, 24, and 72 hours after CPR. At 72 hours after resuscitation, serum and brain tissues were collected. Results. Blood-brain barrier (BBB) permeability increased, and the number of surviving neurons and neurological function decreased in the saline group compared to the sham group. Anti-inflammatory and proinflammatory factors, neuron-specific enolase (NSE) levels, and the expression of eNOS, phosphorylated (p)-eNOS, inducible nitric oxide synthase (iNOS), and oxidative stress-related factors in the three CA groups significantly increased (P<0.05). BBB permeability decreased, and the number of surviving neurons and neurological function increased in the Ac2-26 group compared to the saline group (P<0.05). Ac2-26 increased anti-inflammatory and reduced proinflammatory markers, raised NSE levels, increased the expression of eNOS and p-eNOS, and reduced the expression of iNOS and oxidative stress-related factors compared to the saline group (P<0.05). The effect of Ac2-26 on brain injury was reversed by L-NIO (P<0.05). Conclusions. Ac2-26 reduced brain injury after CPR by inhibiting oxidative stress and neuroinflammation and protecting the BBB. The therapeutic effect of Ac2-26 on brain injury was largely dependent on the eNOS pathway.


2011 ◽  
Vol 18 (6) ◽  
pp. 501-511 ◽  
Author(s):  
STEVEN W. COPP ◽  
DANIEL M. HIRAI ◽  
SCOTT K. FERGUSON ◽  
TIMOTHY I. MUSCH ◽  
DAVID C. POOLE

Sign in / Sign up

Export Citation Format

Share Document