scholarly journals Transcriptomic analysis of clam extrapallial fluids reveals immunity and cytoskeleton alterations in the first week of Brown Ring Disease development

2019 ◽  
Vol 93 ◽  
pp. 940-948 ◽  
Author(s):  
Alexandra Rahmani ◽  
Erwan Corre ◽  
Gaëlle Richard ◽  
Adeline Bidault ◽  
Christophe Lambert ◽  
...  
2019 ◽  
Vol 91 ◽  
pp. 466 ◽  
Author(s):  
Alexandra Rahmani ◽  
Erwan Corre ◽  
Gaëlle Richard ◽  
Adeline Bidault ◽  
Louisi Oliveira ◽  
...  

2009 ◽  
Vol 22 (11) ◽  
pp. 1323-1330 ◽  
Author(s):  
F. Chain ◽  
C. Côté-Beaulieu ◽  
F. Belzile ◽  
J. G. Menzies ◽  
R. R. Bélanger

The supply of soluble silicon (Si) to plants has been associated with many benefits that remain poorly explained and often contested. In this work, the effect of Si was studied on wheat plants under both control and pathogen stress (Blumeria graminis f. sp. tritici) conditions by conducting a large transcriptomic analysis (55,000 unigenes) aimed at comparing the differential response of plants under four treatments. The response to the supply of Si on control (uninfected) plants was limited to 47 genes of diverse functions providing little evidence of regulation of a specific metabolic process. Plants reacted to inoculation with B. graminis f. sp. tritici by an upregulation of many genes linked to stress and metabolic processes and a downregulation of genes linked to photosynthesis. Supplying Si to inoculated plants largely prevented disease development, a phenotypic response that translated into a nearly perfect reversal of genes regulated by the effect of B. graminis f. sp. tritici alone. These results suggest that Si plays a limited role on a plant's transcriptome in the absence of stress, even in the case of a high-Si-accumulating monocot such as wheat. On the other hand, the benefits of Si in the form of biotic stress alleviation were remarkably aligned with a counter-response to transcriptomic changes induced by the pathogen B. graminis f. sp. tritici.


Author(s):  
O. O. Kalinina ◽  
O. D. Golyaeva ◽  
O. V. Panfilova ◽  
А. V. Pikunova

Powdery mildew is one of the most harmful fungal diseases that causes economically significant damage to berry plantations. The disease is common in all areas of currant cultivation in the Russian Federation. In this regard, in modern conditions of intensive berry growing, the problem of breeding cultivars that are highly resistant to diseases and pests becomes urgent. Breeders have a difficult task to combine the adaptive potential of the cultivar with its annual high productivity and resistance to biotic environmental factors. When studying the adaptability of introduced cultivars of red currant and selected forms of the Institute to local soil and climate conditions, the following cultivars were identified as sources of economic and useful characteristics and involved in selection: ‘Belaya Potapenko’ as a complex source of resistance powdery mildew and high marketable and taste qualities of berries; SS 1426-21-80 as a source of high productivity and long racemes (raceme length 11-13 cm; up to 20 berries in the raceme). On their base the selection family of red currant has been developed: Belaya Potapenko × ♂SS 1426-21-80. The study of data on the destruction of hybrid seedlings of the selection family by powdery mildew showed that in epiphytotic conditions, the percentage of intensity of the disease development varies over the periods of screening from 0.2% in May to 20.4% in June. Such indicators served as a prerequisite for conducting a comparative test of breeding material in the field under artificial infection with powdery mildew. After artificial infection on the background of epiphytosis, the rate of intensity of the disease development increased slightly and amounted to 35.6% for the family. There were 30 highly resistant seedlings in the family, 10 of which have remained stable and highly resistant since 2018. In these plants we can assume the presence of the so-called field resistance, controlled by polygens, each of which does not give a visible effect of stability, but with different combinations determines one or another of its degree. Highly resistant seedlings will be used in further breeding studies to identify new sources of resistance to powdery mildew.


Sign in / Sign up

Export Citation Format

Share Document