Temperature profile beneath an inclined ceiling induced by plume impingement of gas fuel jet flame

Fuel ◽  
2018 ◽  
Vol 223 ◽  
pp. 408-413 ◽  
Author(s):  
Xiaochun Zhang ◽  
Haowen Tao ◽  
Zijian Zhang ◽  
Fei Tang ◽  
Guokai Su ◽  
...  
Author(s):  
Bingyan Dong ◽  
Youbo Huang ◽  
Jinxiang Wu

The horizontally oriented jet flame induced by rectangular source impinging upon the opposite wall is actually common in the chemical industry, but the related studies are limited. In this paper, the computational fluid dynamics codes are carried out to investigate the temperature profile in thermal impinging flow of the horizontally oriented methane jet flame with rectangular source, which the rectangular orifice is 400 mm2 with three different aspect ratios (L/W = 1, 2, 4); besides, the jet velocities vary from 27.5 m/s to 125 m/s. As the horizontally oriented methane jet flame impinges on the vertical plate in front of the fuel orifice directly, the vertical temperature along the opposite plate is focused on. Results show that the temperature near the impingement point is the same for different jet velocities, but the temperature along the vertical direction is larger with increasing fuel jet velocity. Moreover, the orifice aspect ratio has a significant effect on the temperature, which increases with the aspect ratio at a given position for the momentum-controlled flame. The effective heat release rate on the basis of unburned fuel and ellipse flame shape hypothesis is put forward to correlate the temperature profile. Finally, a new correlation to illustrate the vertical temperature rising along the opposite plate is proposed in light of the orifice aspect ratio and fuel jet velocity, and the predictions obtained by the proposed model agree well with the numerical results, which is applicable for the horizontally oriented flame with rectangular source impinging upon the opposite wall.


2002 ◽  
Vol 68 (673) ◽  
pp. 2657-2663 ◽  
Author(s):  
Toshiaki KITAGAWA ◽  
Hiroyuki KIDO ◽  
Kyu-Sung KIM ◽  
Hirotaka KOGA
Keyword(s):  
Fuel Jet ◽  

Author(s):  
Ahsan R. Choudhuri ◽  
Sayela P. Luna ◽  
S. R. Gollahalli

The aspect ratio effects of elliptic co-flow on the structure of a turbulent propane diffusion flame from a circular tube have been presented. Pollutant emission, flame radiation, flame structure, and soot concentration have been measured. The fuel jet exit Reynolds number is 2700, and the exit Reynolds number for the co-flow is 4010 and 8025 based on the minor and major axis respectively. The results are compared with the measurements from the experiments in a circular co-flow, which is the baseline condition for the present study. The pollution characteristics and the structure of the flame in the elliptic co-flow are significantly different from those in the circular co-flow. The NO emission is higher and the CO emission is lower in the elliptic co-flow. Elliptic co-flow flame produces less soot than circular co-flow flame. The study shows that the elliptic co-flow aspect ratio has a controlling influence on various combustion characteristics. In general, it is seen that as the aspect ratio of the elliptic co-flow is increased from 2:1 to 4:1, the entrainment of air increases and thus the combustion characteristics are enhanced. Compared to 2:1 AR co-flow flames, the flames with 4:1 AR co-flow are more stable, have a lower flame height, produce more NO and less CO, the flame peak temperature is higher, are less sooty, and radiate less. Flame spectral measurements show that the 4:1 aspect ratio flames produce more OH, CH, C2 and H2O radicals in the near-burner region than the 2:1 co-flow flames as a result of higher fuel oxidation.


1974 ◽  
Vol 22 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Takeshi Kawamura
Keyword(s):  
Fuel Jet ◽  

2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Kuo C. San ◽  
Hung J. Hsu ◽  
Shun C. Yen

The target of this study is to promote combustion capability using a novel rifled nozzle which was set at the outlet of a conventional (unrifled) combustor. The rifled nozzle was utilized to adjust the flow swirling intensity behind the traditional combustor by changing the number of rifles. The rifle mechanism enhances the turbulence intensity and increases the mixing efficiency between the central-fuel jet and the annular swirled air-jet by modifying the momentum transmission. Specifically, direct photography, Schlieren photography, thermocouples, and a gas analyzer were utilized to document the flame behavior, peak temperature, temperature distribution, combustion capability, and gas-concentration distribution. The experimental results confirm that increasing the number of rifles and the annular swirling air-jet velocity (ua) improves the combustion capability. Five characteristic flame modes—jet-flame, flickering-flame, recirculated-flame, ring-flame and lifted-flame—were obtained using various annular air-jet and central fuel-jet velocities. The total combustion capability (Qtot) increases with the number of rifles and with increasing ua. The Qtot of a 12-rifled nozzle (swirling number (S) = 0.5119) is about 33% higher than that of an unrifled nozzle. In addition, the high swirling intensity induces the low nitric oxide (NO) concentration, and the maximum concentration of NO behind the 12-rifled nozzle (S = 0.5119) is 49% lower than that behind the unrifled nozzle.


Author(s):  
Hsiu F. Yang ◽  
Ching M. Hsu ◽  
Rong F. Huang

A plane-jet flame was manipulated by passing the fuel jet through a jet-impingement fluidic oscillator. The plane fuel jet bifurcated into two streams of self-sustained pulsating jets in the cavity of the fluidic oscillator and issued out of two slits on the exit plane of the fluidic oscillator. The oscillation of the bifurcated plane fuel jets caused the flame behavior and combustion characteristics to change significantly compared with the corresponding behavior and characteristics of a nonoscillating plane-jet flame. The oscillation frequency, flame behavior, thermal structure, and combustion-product distributions of the fluidic-oscillator flame were experimentally examined and compared with the nonoscillating plane-jet flame. The flame behavior was studied with instantaneous and long-exposure photography. The temperature distributions were measured with a fine-wire thermocouple. The combustion-product concentrations were detected with a gas analyzer. The results showed that the length and width of the fluidic-oscillator flame were reduced by approximately 45% and enlarged by approximately 40%, respectively, compared with the length and width of the nonoscillating plane-jet flame. The transverse temperature profiles of the fluidic-oscillator flame presented a wider spread than did the plane-jet flame. The fluidic-oscillator flame’s maximum temperature was approximately 100 °C higher than that of the plane-jet flame. The fluidic-oscillator flame presented a larger CO2 concentration and a smaller unburned C3H8 concentration than did the plane-jet flame. The experimental results indicated that the combustion in the fluidic-oscillator flame was more complete than that in the plane-jet flame.


2005 ◽  
Vol 127 (1) ◽  
pp. 187-196 ◽  
Author(s):  
Lyle M. Pickett ◽  
Dennis L. Siebers

The effects of orifice diameter on several aspects of diesel fuel jet flame structure were investigated in a constant-volume combustion vessel under heavy-duty direct-injection (DI) diesel engine conditions using Phillips research grade #2 diesel fuel and orifice diameters ranging from 45 μm to 180 μm. The overall flame structure was visualized with time-averaged OH chemiluminescence and soot luminosity images acquired during the quasi-steady portion of the diesel combustion event that occurs after the transient premixed burn is completed and the flame length is established. The lift-off length, defined as the farthest upstream location of high-temperature combustion, and the flame length were determined from the OH chemiluminescence images. In addition, relative changes in the amount of soot formed for various conditions were determined from the soot incandescence images. Combined with previous investigations of liquid-phase fuel penetration and spray development, the results show that air entrainment upstream of the lift-off length (relative to the amount of fuel injected) is very sensitive to orifice diameter. As orifice diameter decreases, the relative air entrainment upstream of the lift-off length increases significantly. The increased relative air entrainment results in a reduced overall average equivalence ratio in the fuel jet at the lift-off length and reduced soot luminosity downstream of the lift-off length. The reduced soot luminosity indicates that the amount of soot formed relative to the amount of fuel injected decreases with orifice diameter. The flame lengths determined from the images agree well with gas jet theory for momentum-driven nonpremixed turbulent flames.


2012 ◽  
Vol 29 (2) ◽  
pp. 273-280 ◽  
Author(s):  
S. C. Yen ◽  
C. L. Shih

AbstractFour helical-grooved cones were installed behind an unconfined combustion nozzle to increase the bluff-body effect and turbulence intensity (T.I.). The cone configurations included a smooth cone and the other three cones cut with 1, 2 and 3 helical v-grooves. Experimental results showed that the helical v-grooves transformed the axial momentum (or the axial velocity) to the angular momentum (or the angular velocity). TheT.I.was enhanced by increasing the tangential component of fuel-jet momentum. The direct photography and thermocouple were utilized to observe the flame structures and to delineate the characteristic flame modes, flame length, temperature distribution, and combustion intensity. The flame modes were classified as jet flame, flickering flame, bubble flame, recirculation flame, lifted flame and ring flame. The flame length decreases as the groove number increases. The increasedT.I.and groove number (or bluff-body effect) improve the fuel-air mixing. The total combustion intensity increases with annular-air jet and with the groove number.


Sign in / Sign up

Export Citation Format

Share Document