Ethanolic ammonia pretreatment for efficient biogas production from sugarcane bagasse

Fuel ◽  
2019 ◽  
Vol 248 ◽  
pp. 196-204 ◽  
Author(s):  
Seyed Sajad Hashemi ◽  
Keikhosro Karimi ◽  
Abdul Majid Karimi
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


Energy ◽  
2015 ◽  
Vol 90 ◽  
pp. 1199-1205 ◽  
Author(s):  
Yunyun Liu ◽  
Jingliang Xu ◽  
Yu Zhang ◽  
Zhenhong Yuan ◽  
Minchao He ◽  
...  

2021 ◽  
Vol 281 ◽  
pp. 123922
Author(s):  
Meenu Hans ◽  
Shruti Garg ◽  
Vanessa O.A. Pellegrini ◽  
Jefferson G. Filgueiras ◽  
Eduardo R. de Azevedo ◽  
...  

2019 ◽  
Vol 292 ◽  
pp. 121963 ◽  
Author(s):  
Gustavo Amaro Bittencourt ◽  
Elisa da Silva Barreto ◽  
Rogélio Lopes Brandão ◽  
Bruno Eduardo Lobo Baêta ◽  
Leandro Vinícius Alves Gurgel

Author(s):  
Bright Boafo Boamah ◽  
Edward Kwaku Armah ◽  
Emmanuel Kweinor Tetteh ◽  
Gifty OppongBoakye

2020 ◽  
Vol 67 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Sosyu Tsutsui ◽  
Kiyoshi Sakuragi ◽  
Kiyohiko Igarashi ◽  
Masahiro Samejima ◽  
Satoshi Kaneko

Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 1100-1105 ◽  
Author(s):  
Neelam Vats ◽  
Abid Ali Khan ◽  
Kafeel Ahmad

Sign in / Sign up

Export Citation Format

Share Document