scholarly journals Codigestion of Pressmud and Distillery Wastewater with Sugarcane Bagasse for Enhanced Biogas Production

Author(s):  
Michelle C. Almendrala ◽  
Ralph Carlo T. Evidente ◽  
Jasmine Marjorie C. Legarde ◽  
Kristopher Ray S. Pamintuan
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


Energy ◽  
2015 ◽  
Vol 90 ◽  
pp. 1199-1205 ◽  
Author(s):  
Yunyun Liu ◽  
Jingliang Xu ◽  
Yu Zhang ◽  
Zhenhong Yuan ◽  
Minchao He ◽  
...  

2019 ◽  
Vol 292 ◽  
pp. 121963 ◽  
Author(s):  
Gustavo Amaro Bittencourt ◽  
Elisa da Silva Barreto ◽  
Rogélio Lopes Brandão ◽  
Bruno Eduardo Lobo Baêta ◽  
Leandro Vinícius Alves Gurgel

2010 ◽  
Vol 62 (3) ◽  
pp. 475-483 ◽  
Author(s):  
M. Akassou ◽  
A. Kaanane ◽  
A. Crolla ◽  
C. Kinsley

The objective of this study was to determine the effectiveness of anaerobic digestion in the treatment of polyphenols (PP) present in olive mill wastewater (OMW) and wine distillery wastewater (WDW). Anaerobic Toxicity Assay (ATA) was conducted to assess the impact of the most representative phenolic compounds present in OMW and WDW: catechol, tannins and p-Coumaric acid, on biogas production. The results from this study show that tannins do not present any inhibitory effect on methanogenesis at a concentration level of 1,664 ppm, whereas catechol has an inhibitory effect at 1,664 ppm. In addition, p-Coumaric acid was strongly inhibitory at 50 ppm. The co-digestion of OMW and WDW with other effluents was proposed as a solution for reducing the load of PP in the anaerobic medium. Biochemical methane potential (BMP) tests were carried out for dairy cattle manure and mixtures of five PP. A central composite design was implemented on the BMP tests to model the biogas production response and the degradation kinetics of PP. The co-digestion of WDW with cattle manure and/or whey was also investigated in BMP tests. The results show that the digestion was optimal at a ratio of 16: 64: 20 (WDW: manure: inoculum) with a maximum biogas yield of 172 mL/g of VS and 66% COD removal.


Author(s):  
Bright Boafo Boamah ◽  
Edward Kwaku Armah ◽  
Emmanuel Kweinor Tetteh ◽  
Gifty OppongBoakye

Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 1100-1105 ◽  
Author(s):  
Neelam Vats ◽  
Abid Ali Khan ◽  
Kafeel Ahmad

Fuel ◽  
2019 ◽  
Vol 248 ◽  
pp. 196-204 ◽  
Author(s):  
Seyed Sajad Hashemi ◽  
Keikhosro Karimi ◽  
Abdul Majid Karimi

2021 ◽  
Vol 943 (1) ◽  
pp. 012017
Author(s):  
R C Evidente ◽  
M C Almendrala ◽  
A R Caparanga ◽  
K R Pamintuan ◽  
J A Mendoza

Abstract With goals in determining the effect of diluting the distillery wastewater (DWW) and of varying the amount of DWW and press mud (PM), anaerobic co-digestion study was carried out at mesophilic condition in a 2-L Erlenmeyer flask, with a working volume of 800 mL for Batch 1 and 1500 mL for Batch 2 experiments. For Batch 1, two different ratios of DWW and tap water, with 2:3 and 3:2, were used to assess the effect of dilution on the methane yield, where same volumetric amount of PM was added. For Batch 2, following ratio of PM and DWW were used: a) 1:0, b) 1:1, c) 1:1, d) 2:1, and e) 1:2. All samples had the same amount of inoculum, except that Batch 1 samples had bagasse. The parameters that were assessed after 42 days of digestion were: pH, COD, BOD, TSS, VS, Cu, Ca, Mg, Mn, TOC, TN, and methane yield. For the effect of dilution, a significant difference in the methane yield between samples with higher and lower dilution ratio was seen, and in the first batch, the optimal dilution ratio of DWW and H2O, with 3:2 gave higher methane yield of 78.23% (v/v). Meanwhile, optimal volumetric ratio of DWW and PM from the Batch 2 experiments, with value of 1:2, gave the highest methane yield of 79.43% (v/v).


Sign in / Sign up

Export Citation Format

Share Document