On-site experimental study on fouling and heat transfer characteristics of flue gas heat exchanger for waste heat recovery

Fuel ◽  
2021 ◽  
Vol 296 ◽  
pp. 120532
Author(s):  
Song-Zhen Tang ◽  
Ya-Ling He ◽  
Fei-Long Wang ◽  
Qin-Xin Zhao ◽  
Yang Yu
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Bin Zheng ◽  
Yongqi Liu ◽  
Lichen Zou ◽  
Ruiyang Li

This paper reports the results of heat transfer characteristics of calcined petroleum coke in waste heat recovery process. The model of heat exchanger was set up. The model has been used to investigate the effects of porosity (0.58 to 0.79), equivalent heat conductivity coefficient (0.9 to 1.1), and equivalent specific heat (0.9 to 1.1). The calculated values of calcined petroleum coke temperature showed good agreement with the corresponding available experimental data. The temperature distribution of calcined petroleum coke, the calcined petroleum coke temperature at heat exchanger outlet, the average heat transfer coefficient, and the heat recovery efficiency were studied. It can also be used in deriving much needed data for heat exchanger designs when employed in industry.


2018 ◽  
Vol 7 (3.3) ◽  
pp. 6
Author(s):  
Ki. Hyun Kim ◽  
Mahesh Suresh Patil ◽  
Jae Hyeong Seo ◽  
Chan Jung Kim ◽  
Gee Soo Lee ◽  
...  

Background/Objectives: The parametric study on heat transfer characteristics of waste heat recovery heat exchanger was carried out by varying different geometry parameters to suggest optimum model for automotive exhaust thermoelectric generator.Methods/Statistical analysis: The numerical analysis method was applied to compare the heat transfer characteristics of various heat exchanger models. For numerical analysis, various models were created using computer aided drawing considering different fin arrangements and guide plates. Commercial code ANSYS 17.0 was used to analyze the heat transfer and fluid flow behavior of various models. Mesh independency was conducted to enhance the accuracy of the results.Findings: The thermal performance analysis of waste heat recovery heat exchanger was conducted considering pressure drop and heat flux at cooling side. As the fin spaces were increased, the heat flux at cooling side increased, but pressure drop also increased.Improvements/Applications: The developed geometry can be further optimized considering other geometry parameters and efficient system could be developed for power generation using waste heat with heat recovery exchanger and the present study provides detailed numerical analysis considering pressure drop and heat flux. 


Sign in / Sign up

Export Citation Format

Share Document