Effect of H2S and NH3 in biomass gasification producer gas on CO2 capture performance of an innovative CaO and Fe2O3 based sorbent

Fuel ◽  
2021 ◽  
Vol 295 ◽  
pp. 120586
Author(s):  
F. Dashtestani ◽  
M. Nusheh ◽  
V. Siriwongrungson ◽  
J. Hongrapipat ◽  
V. Materic ◽  
...  
2020 ◽  
Vol 59 (41) ◽  
pp. 18447-18459
Author(s):  
Forogh Dashtestani ◽  
Mohammad Nusheh ◽  
Vilailuck Siriwongrungson ◽  
Janjira Hongrapipat ◽  
Vlatko Materic ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8167
Author(s):  
Forogh Dashtestani ◽  
Mohammad Nusheh ◽  
Vilailuck Siriwongrungson ◽  
Janjira Hongrapipat ◽  
Vlatko Materic ◽  
...  

This study investigated the effect of HCl in biomass gasification producer gas on the CO2 capture efficiency and contaminants removal efficiency by CaO-Fe2O3 based sorbent material in the calcium looping process. Experiments were conducted in a fixed bed reactor to capture CO2 from the producer gas with the combined contaminants of HCl at 200 ppmv, H2S at 230 ppmv, and NH3 at 2300 ppmv. The results show that with presence of HCl in the feeding gas, sorbent reactivity for CO2 capture and contaminants removal was enhanced. The maximum CO2 capture was achieved at carbonation temperatures of 680 °C, with efficiencies of 93%, 92%, and 87%, respectively, for three carbonation-calcination cycles. At this carbonation temperature, the average contaminant removal efficiencies were 92.7% for HCl, 99% for NH3, and 94.7% for H2S. The outlet contaminant concentrations during the calcination process were also examined which is useful for CO2 reuse. The pore structure change of the used sorbent material suggests that the HCl in the feeding gas contributes to high CO2 capture efficiency and contaminants removal simultaneously.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Eliseu Monteiro ◽  
Abel Rouboa

In the currently reported work, three typical mixtures of H2, CO, CH4, CO2, and N2 have been considered as representative of the producer gas (syngas) coming from biomass gasification. Syngas is being recognized as a viable energy source worldwide, particularly for stationary power generation. However, there are gaps in the fundamental understand of syngas combustion characteristics, especially at elevated pressures that are relevant to practical combustors. In this work, constant volume spherical expanding flames of three typical syngas compositions resulting from biomass gasification have been employed to measure the laminar burning velocities for pressures ranges between 1.0 and 20 bar tanking into account the stretch effect on burning velocity. Over the ranges studied, the burning velocities are fit by a functional form Su=Su0(T/T0)α(P/P0)β; and the dependencies of α and β upon the equivalence ratio of mixture are also given. Conclusion can be drawn that the burning velocity decreases with the increase of pressure. In opposite, an increase in temperature induces an increase of the burning velocity. The higher burning velocity value is obtained for downdraft syngas. This result is endorsed to the higher heat value, lower dilution and higher volume percentage of hydrogen in the downdraft syngas.


Author(s):  
Eliseu Monteiro ◽  
Abel Rouboa

In the proposed paper for this conference, three typical mixtures of H2, CO, CH4, CO2 and N2 have been considered as representative of the producer gas (syngas) resulting from biomass gasification. Syngas is being recognized worldwide as a viable energy source, particularly for stationary power generation. However, there are gaps in the fundamental understanding of syngas combustion characteristics, particularly at elevated pressures that are relevant to practical combustors. In this work, constant volume spherical expanding flames of three typical syngas compositions have been employed to measure the laminar burning velocity for pressures ranges between 1.0 and 20 bar. Over the ranges studied, the burning velocities are fitted by the functional formula of Metghalchi and Keck. Conclusion can be drawn that the burning velocity decreases with the increase of pressure. In opposite, the increase of temperature induces the increase of burning velocity. The higher burning velocity value is obtained for the downdraft syngas. This result is endorsed to the higher heat value, lower dilution and higher volume percentage of hydrogen in the downdraft syngas.


2011 ◽  
Vol 36 (9) ◽  
pp. 5296-5310 ◽  
Author(s):  
Luca Di Felice ◽  
Claire Courson ◽  
Pier Ugo Foscolo ◽  
Alain Kiennemann

2005 ◽  
Vol 44 (5) ◽  
pp. 1576-1584 ◽  
Author(s):  
Tobias Pröll ◽  
Ingmar G. Siefert ◽  
Anton Friedl ◽  
Hermann Hofbauer

2003 ◽  
Author(s):  
Jesper Ahrenfeldt ◽  
Ulrik Henriksen ◽  
Jesper Schramm ◽  
Torben K. Jensen ◽  
Helge Egsgaard

2012 ◽  
Vol 267 ◽  
pp. 57-63
Author(s):  
Worapot Ngamchompoo ◽  
Kittichai Triratanasirichai

A comprehensive process model is developed for high temperature air – steam biomass gasification in a downdraft gasifier using the ASPEN PLUS simulator. The simulation results are compared with the experimental data obtained through pilot scale downdraft gasifier. In this study, the model is used to investigate the effects of gasifying agent preheating, equivalence ratio (ER), and steam/biomass (S/B) on producer gas composition, high heating value (HHV), and cold gas efficiency (CGE). Results indicate that H2 and CO contents have increased when gasifying agent preheating is used, while gasifying agent preheating has no effect with H2 and CO at high ER. At high level of S/B, the concentrations of H2 and CO are related with water-gas shift reaction in significant. HHV and CGE depend on the concentrations of H2 and CO in producer gas, which can increase by preheated gasifying agent. However, gasifying agent preheating should apply with waste heat from the process because there is no additional cost of energy price.


Sign in / Sign up

Export Citation Format

Share Document