scholarly journals Numerical investigation on influences of inlet flow pattern on RP-3 thermal oxidation deposition

Fuel ◽  
2021 ◽  
Vol 303 ◽  
pp. 121314
Author(s):  
Zhixiong Han ◽  
Weixing Zhou ◽  
Hao Zan ◽  
Zhenjian Jia ◽  
Sergey Martynenko ◽  
...  
Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1834
Author(s):  
Yuxi Li ◽  
Wanglin Li ◽  
Jiapeng He ◽  
Xiaojiao Zhang ◽  
Xinyi Li

Infiltration and anti-filtration recharge-pumping wells (hereinafter, referred to as IAF recharge-pumping wells) can enable rain-flood flowing in rivers or channel recharge to aquifers, in flood periods, and pump groundwater to be utilized in non-flood periods. In this study, a round IAF recharge-pumping well and a square IAF recharge-pumping well were developed, the structure and characteristic were introduced, the calculation equations of single-well recharge quantity of IAF recharge-pumping wells, in unconfined aquifers were deduced, and the steady-state flow recharge test was conducted in the laboratory. The conclusions were as follows. The theoretical equation of the single-well recharge quantity was reasonable. Compared to existing anti-filtration recharge wells, the new IAF recharge-pumping well had stronger anti-deposit and anti-scour abilities and the single-well recharge quantity increased by 400%. Compared to the square IAF recharge-pumping well, the round IAF recharge-pumping well had a better inlet flow pattern and a larger single-well recharge quantity. With an increase in the test times, the single-well recharge quantity gradually decreased and tended to be stable. The existence of the pumping pipe had a little influence on the single-well recharge quantity.


2006 ◽  
Author(s):  
Jorge E. Pacheco ◽  
Miguel A. Reyes

Liquid-Liquid Cylindrical Cyclone (LLCC) separators are devices used in the petroleum industry to extract a portion of the water from the oil-water mixture obtained at the well. The oil-water mixture entering the separator is divided due to centrifugal and buoyancy forces in an upper (oil rich) exit and a bottom (water rich) exit. The advantages in size and cost compared with traditional vessel type static separators are significant. The use of LLCC separators has not been widespread due to the lack of proven performance prediction tools. Mechanistic models have been developed over the years as tools for predicting the behavior of these separators. These mechanistic models are highly dependent on the inlet flow pattern prediction. Thus, for each specific inlet flow pattern a sub-model has to be developed. The use of surrogate models will result in prediction tools that are accurate over a wider range of operational conditions. We propose in this study to use surrogate models based on a minimum-mean-squared-error method of spatial prediction known as Kriging. Kriging models have been used in different applications ranging from structural optimization, conceptual design, multidisciplinary design optimization to mechanical and biomedical engineering. These models have been developed for deterministic data. They are targeted for applications where the available information is limited due to the cost of the experiments or the time consumed in numerical simulations. We propose to use these models with a different framework so that they can manage information from replications. For the LLCC separator a two-stage surrogate model is built based on the Bayesian surrogate multistage approach, which allows for data to be incorporated as the model is improved. Cross validation mean squared error measurements are analyzed and the model obtained shows good predicting capabilities. These surrogate models are efficient and versatile predicting tools that do not require information about the physical phenomena that drives the separation process.


1984 ◽  
Author(s):  
T. HSIEH ◽  
A. WARDLAW, JR. ◽  
P. COLLINS ◽  
T. COAKLEY

Sign in / Sign up

Export Citation Format

Share Document