cylindrical cyclone
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 32)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
pp. 1-27
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract The Gas-Liquid Cylindrical Cyclone (GLCC©*) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. More than 6,500 GLCC©'s have been installed in the field to date around the world over the past 2 decades. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. The flow behavior in the GLCC© body is highly dependent on the fluid velocities generated at the reduced area nozzle inlet. An earlier study (Kolla et al. [1]) recommended design modifications to the inlet section, based on safety and structural robustness. It is important to ensure that these proposed configuration modifications do not adversely affect the flow behavior at the inlet and the overall performance of the GLCC©. This paper presents a numerical study utilizing specific GLCC© field application working under 3 different case studies representing the flow entering the GLCC, separating light oil, steam flooded wells in Minas, Indonesia. Commercially available Computational Fluid Dynamics (CFD) software is utilized to analyze the hydrodynamics of flow with the proposed modifications of the inlet section for GLCC© field applications.


2021 ◽  
pp. 116595
Author(s):  
Yaan Wang ◽  
Jianyi Chen ◽  
Yang Yang ◽  
Mingshan Han ◽  
Yuhang Zhou ◽  
...  

2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract Gas carry-under (GCU) and the corresponding gas volume fraction (GVF) in the gas–liquid cylindrical cyclone (GLCC©)2 liquid outlet occurs even within its normal operational envelope (OPEN). Few studies are available on GLCC, GCU, and GVF, which have been carried out in a GLCC operated in a metering loop configuration. This study focuses on GLCC GCU and GVF in swirling flow under separated outlet configuration with active control, which increases the GLCC OPEN significantly. A state-of-the-art test facility is used to acquire extensive GCU and GVF data for both air–water and air–oil flow in a 3″ diameter GLCC. The GLCC is equipped with three sequential trap sections to measure the instantaneous GVF and gas evolution in its lower part below the inlet. Also, gas trap sections are installed in the GLCC liquid outlet leg to measure the overall time-averaged GCU and GVF. The extensive acquired data shed light on the complex flow behavior in the lower part of the GLCC and its effect on the GCU and GVF in the GLCC. Tangential wall jet impingement from the GLCC inlet is the cause of gas entrainment and swirling in the lower GLCC body. The swirling flow mechanisms in the lower part of the GLCC are identified, which affect the GCU and GVF. The liquid viscosity and surface tension also affect the results. The GCU and GVF in the GLCC liquid outlet reduce as the superficial liquid velocities are increased for both air–oil and air–water flows, whereby the superficial gas velocities do not have a significant effect. The GCU and GVF for air–water flow are three orders of magnitude lower as compared to the air–oil flow.


Author(s):  
Lele Yang ◽  
Jing Wang ◽  
Li Zou

Abstract The gas–liquid cylindrical cyclone (GLCC) employs gravitational and centrifugal forces to realize gas-liquid separation. The aim of this study is to understand the droplet size distribution and pressure control in the GLCC via experiment and numerical analysis. The droplet size and pressure distributions were measured using Malvern RTsizer and pressure transmitters, respectively. The Discrete Phase Model was used to numerically analyze the swirling hydrodynamics of the GLCC. The results showed that the increase in the gas superficial velocity decreased the droplet size distribution at the inlet as a whole due to the shear effect and flow instability. The increase in the liquid superficial velocity only increased the small droplet size distribution at the inlet for the limitation of the gas’s carrying capacity. The pressure loss mainly occurred at the inlet and the overflow outlet. When the liquid level was remained below the inlet and above the liquid outlet, the liquid level and the liquid outlet section approximately met the Bernoulli equation for a finite large flow beam. With the increase in the pressure at the gas outlet, the liquid film fell back and the separation efficiency increased gradually. These results are helpful for further spreading applications of the GLCC in industry.


Sign in / Sign up

Export Citation Format

Share Document