The effect of leakage characteristics of liquid CO2 phase transition on fracturing coal seam: Applications for enhancing coalbed methane recovery

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 122044
Author(s):  
Zheng Shang ◽  
Haifeng Wang ◽  
Bing Li ◽  
Yuanping Cheng ◽  
Xinghua Zhang ◽  
...  
Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120283
Author(s):  
Zheng Shang ◽  
Haifeng Wang ◽  
Bing Li ◽  
Congmeng Hao ◽  
zhengyang Wang ◽  
...  

2015 ◽  
Vol 1092-1093 ◽  
pp. 1620-1624
Author(s):  
Zhi Hao Yang ◽  
Zhi Ping Li ◽  
Feng Peng Lai ◽  
Jun Jie Yi

According to the problems that the coalbed methane resource was rich in deep seam in China, but the economic and technology conditions were limited, it would be hard to mine with a conventional method. The CO2 capture, utilization and storage technology was provided (CO2-ECBM). The application of the technology would not only improve the methane recovery ratio from deep and unminable layer, but also put CO2 effectively in the deep layer for storage to reach a target of reducing emission. The study showed that a coal rank, coal seam pressure, coal seam permeability, injection time, injected gas types and others would affect to the recovery ratio of methane in a production mine. Therefore, before we use this technology, a rational evaluation should be conducted on the place location. So the capture and storage technology of CO2 has an important significance in protecting the natural environment.


Fuel ◽  
2021 ◽  
Vol 284 ◽  
pp. 119043 ◽  
Author(s):  
Gaoming Wei ◽  
Hu Wen ◽  
Jun Deng ◽  
Li Ma ◽  
Zhenbao Li ◽  
...  

Fuel ◽  
2017 ◽  
Vol 208 ◽  
pp. 41-51 ◽  
Author(s):  
Jizhao Xu ◽  
Cheng Zhai ◽  
Shimin Liu ◽  
Lei Qin ◽  
Shangjian Wu

2011 ◽  
Vol 5 (2) ◽  
pp. 139-161 ◽  
Author(s):  
Geoff G. X. Wang ◽  
Xiaodong Zhang ◽  
Xiaorong Wei ◽  
Xuehai Fu ◽  
Bo Jiang ◽  
...  

Energy ◽  
2021 ◽  
pp. 122145
Author(s):  
Jizhao Xu ◽  
Cheng Zhai ◽  
Pathegama Gamage Ranjith ◽  
Shuxun Sang ◽  
Yong Sun ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jianfeng Yang ◽  
Haojie Lian ◽  
Li Li

Abstract The present work conducted laboratory experiments of fracturing in fat coals, anthracites, and mudstones. Three different fluids were selected as the fracturing fluids, including water, liquid CO2 (L-CO2), and supercritical CO2 (Sc-CO2). The resulting fracture morphologies and fracture apertures of the coal specimens were investigated using 3D morphological scanning, and the permeabilities of the samples were measured before and after fracturing. The experimental results showed that the breakdown pressures of Sc-CO2 fracturing were the lowest among the three fracturing fluids, and the average single fracture apertures of the ScCO2-induced cracks were the smallest amongst the three fracturing fluids. In addition, the number of cracks and the roughness coefficients induced by Sc-CO2 fracturing were larger than those caused by water and liquid CO2. The viscosity of the fracturing fluid and the capillary effect are key factors that affect the crack propagation path and fracture surface topography. The results suggest that Sc-CO2 has the largest diffusion length, and thus is capable of permeating the coal matrix through small pores and causing more extensive fractures. Additionally, the effective hydraulic apertures of coal specimens produced by Sc-CO2 fracturing were wider than those induced by water and liquid CO2. The experimental results indicate that Sc-CO2 fracturing has huge potential to enhance coalbed methane recovery.


Fuel ◽  
2020 ◽  
pp. 119793
Author(s):  
Shixing Fan ◽  
Duo Zhang ◽  
Hu Wen ◽  
Xiaojiao Cheng ◽  
Xiangrong Liu ◽  
...  

Fuel ◽  
2020 ◽  
Vol 265 ◽  
pp. 116912
Author(s):  
Xin Bai ◽  
Dongming Zhang ◽  
Sheng Zeng ◽  
Shuwen Zhang ◽  
Dengke Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document