A review on transport of coal seam gas and its impact on coalbed methane recovery

2011 ◽  
Vol 5 (2) ◽  
pp. 139-161 ◽  
Author(s):  
Geoff G. X. Wang ◽  
Xiaodong Zhang ◽  
Xiaorong Wei ◽  
Xuehai Fu ◽  
Bo Jiang ◽  
...  
2015 ◽  
Vol 1092-1093 ◽  
pp. 1620-1624
Author(s):  
Zhi Hao Yang ◽  
Zhi Ping Li ◽  
Feng Peng Lai ◽  
Jun Jie Yi

According to the problems that the coalbed methane resource was rich in deep seam in China, but the economic and technology conditions were limited, it would be hard to mine with a conventional method. The CO2 capture, utilization and storage technology was provided (CO2-ECBM). The application of the technology would not only improve the methane recovery ratio from deep and unminable layer, but also put CO2 effectively in the deep layer for storage to reach a target of reducing emission. The study showed that a coal rank, coal seam pressure, coal seam permeability, injection time, injected gas types and others would affect to the recovery ratio of methane in a production mine. Therefore, before we use this technology, a rational evaluation should be conducted on the place location. So the capture and storage technology of CO2 has an important significance in protecting the natural environment.


1997 ◽  
Vol 37 (1) ◽  
pp. 589
Author(s):  
D.J. Gately

1996 was a watershed year for gas exploration in Queensland: the increasing private sector investment in the search for and commercial use of methane gas from coal seams received legislative endorsement. Coal seam gas (CSG), also known as coalbed methane or CBM, was officially designated as petroleum, with exploration for and production of CSG to be administered under the Petroleum Act.The paper traces the history of exploration for CSG in Queensland since 1976, culminating in a policy shift in 1996. In Queensland there is now potential for overlapping titles and competitive resource development.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 626 ◽  
Author(s):  
Chaojun Fan ◽  
Mingkun Luo ◽  
Sheng Li ◽  
Haohao Zhang ◽  
Zhenhua Yang ◽  
...  

The reservoir permeability dominates the transport of gas and water in coal seam. However, coal seams rich in gas usually contain various pores and fractures blocked by a large amount of minerals, which leads to an ultra-low permeability and gas extraction rate, and thus an increase of drilling workload. We first propose a thermo-hydro-mechanical-chemical coupled model (THMC) for the acid fracturing enhanced coalbed methane recovery (AF-ECBM). Then, this model is applied to simulate the variation of key parameters during AF-ECBM using a 2D geometry. The effect of different extraction schedules are comparatively analyzed to give an insight into these complex coupling responses in coal seam. Result confirms that the AF-ECBM is an effective way to increase the reservoir permeability and improve the gas production using the proposed model. The range of permeability increment zone increases most dramatically in the way of acid fracturing, followed by none-acid fracturing and acidizing over time. The gas production in order is: acid fracturing (AF-ECBM) > fracturing (F-ECBM) > acidification (A-ECBM)> direct extraction (D-CBM).


Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 122044
Author(s):  
Zheng Shang ◽  
Haifeng Wang ◽  
Bing Li ◽  
Yuanping Cheng ◽  
Xinghua Zhang ◽  
...  

2021 ◽  
pp. 074171362110053
Author(s):  
Tracey Ollis

This case study research examines informal adult learning in the Lock the Gate Alliance, a campaign against mining for coal seam gas in Central Gippsland, Australia. In the field of the campaign, circumstantial activists learn to think critically about the environment, they learn informally and incidentally, through socialization with experienced activists from and through nonformal workshops provided by the Environmental Nongovernment Organization Friends of the Earth. This article uses Bourdieu’s “theory of practice,” to explore the mobilization of activists within the Lock the Gate Alliance field and the practices which generate knowledge and facilitate adult learning. These practices have enabled a diverse movement to educate the public and citizenry about the serious threat fracking poses to the environment, to their land and water supply. The movements successful practices have won a landmark moratorium on fracking for coal seam gas in the State of Victoria.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 213
Author(s):  
Chao Cui ◽  
Suoliang Chang ◽  
Yanbin Yao ◽  
Lutong Cao

Coal macrolithotypes control the reservoir heterogeneity, which plays a significant role in the exploration and development of coalbed methane. Traditional methods for coal macrolithotype evaluation often rely on core observation, but these techniques are non-economical and insufficient. The geophysical logging data are easily available for coalbed methane exploration; thus, it is necessary to find a relationship between core observation results and wireline logging data, and then to provide a new method to quantify coal macrolithotypes of a whole coal seam. In this study, we propose a L-Index model by combing the multiple geophysical logging data with principal component analysis, and we use the L-Index model to quantitatively evaluate the vertical and regional distributions of the macrolithotypes of No. 3 coal seam in Zhengzhuang field, southern Qinshui basin. Moreover, we also proposed a S-Index model to quantitatively evaluate the general brightness of a whole coal seam: the increase of the S-Index from 1 to 3.7, indicates decreasing brightness, i.e., from bright coal to dull coal. Finally, we discussed the relationship between S-Index and the hydro-fracturing effect. It was found that the coal seam with low S-Index values can easily form long extending fractures during hydraulic fracturing. Therefore, the lower S-Index values indicate much more favorable gas production potential in the Zhengzhuang field. This study provides a new methodology to evaluate coal macrolithotypes by using geophysical logging data.


Sign in / Sign up

Export Citation Format

Share Document