Modeling and validation of the CO2 degassing effect on CaCO3 precipitation using oilfield data

Fuel ◽  
2021 ◽  
pp. 122067
Author(s):  
Rafael de Paula Cosmo ◽  
Fabio de Assis Ressel Pereira ◽  
Edson José Soares ◽  
André Leibsohn Martins
Keyword(s):  
Author(s):  
Sutthipong Taweelarp ◽  
Supanut Suntikoon ◽  
Thaned Rojsiraphisal ◽  
Nattapol Ploymaklam ◽  
Schradh Saenton

Scaling in a geothermal piping system can cause serious problems by reducing flow rates and energy efficiency. In this work, scaling potential of San Kamphaeng (SK) geothermal energy, Northern Thailand was assessed based on geochemical model simulation using physical and chemical properties of hot spring water. Water samples from surface seepage and groundwater wells, analyzed by ICP-OES and ion chromatograph methods for chemical constituents, were dominated by Ca-HCO3 facies having partial pressure of carbon dioxide of 10–2.67 to 10–1.75 atm which is higher than ambient atmospheric CO2 content. Surface seepage samples have lower temperature (60.9°C) than deep groundwater (83.1°C) and reservoir (127.1°C, based on silica geothermometry). Geochemical characteristics of the hot spring water indicated significant difference in chemical properties between surface seepage and deep, hot groundwater as a result of mineral precipitation along the flow paths and inside well casing. Scales were mainly composed of carbonates, silica, Fe-Mn oxides. Geochemical simulations based on multiple chemical reaction equilibria in PHREEQC were performed to confirm scale formation from cooling and CO2-degassing processes. Simulation results showed total cumulative scaling potential (maximum possible precipitation) from 267-m deep well was estimated as 582.2 mg/L, but only 50.4% of scaling potential actually took place at SK hot springs. In addition, maximum possible carbon dioxide outflux to atmosphere from degassing process in SK geothermal field, estimated from the degassing process, was 6,960 ton/year indicating a continuous source of greenhouse gas that may contribute to climate change. Keywords: Degassing, Geochemical modeling, PHREEQC, San Kamphaeng Hot Springs, Scaling


2009 ◽  
Vol 6 (8) ◽  
pp. 1539-1561 ◽  
Author(s):  
A. F. Hofmann ◽  
J. J. Middelburg ◽  
K. Soetaert ◽  
F. J. R. Meysman

Abstract. A new pH modelling approach is presented that explicitly quantifies the influence of biogeochemical processes on proton cycling and pH in an aquatic ecosystem, and which accounts for time variable acid-base dissociation constants. As a case study, the method is applied to investigate proton cycling and long-term pH trends in the Scheldt estuary (SW Netherlands, N Belgium). This analysis identifies the dominant biogeochemical processes involved in proton cycling in this heterotrophic, turbid estuary. Furthermore, information on the factors controlling the longitudinal pH profile along the estuary as well as long-term pH changes are obtained. Proton production by nitrification is identified as the principal biological process governing the pH. Its acidifying effect is mainly counteracted by proton consumption due to CO2 degassing. Overall, CO2 degassing generates the largest proton turnover in the whole estuary on a yearly basis. The main driver of long-term changes in the mean estuarine pH over the period 2001 to 2004 is the decreasing freshwater flow, which influences the pH directly via a decreasing supply of dissolved inorganic carbon and alkalinity, and also indirectly, via decreasing ammonia loadings and lower nitrification rates.


2021 ◽  
Author(s):  
Pedro A. Hernández ◽  
Gladys Melian ◽  
María Asensio-Ramos ◽  
Eleazar Padron ◽  
Hirochicka Sumino ◽  
...  

<p>Significant temporal variations in the chemical and isotopic composition of Taal fumarolic gas as well as in diffuse CO<sub>2</sub> emission from Taal Main Crater Lake (TMLC) have been observed across the ~12 years of geochemical monitoring (Arpa et al., 2013; Hernández et a., 2017), with significant high CO<sub>2 </sub>degassing rates, typical of plume degassing volcanoes, measured in 2011 and 2017. In addition to these CO<sub>2</sub> surveys at the TCML, soil CO<sub>2</sub> efflux continuous monitoring was implemented at Taal volcano since 2016 and a clear increasing trend of the soil CO<sub>2</sub> efflux in 2017 was also observed. Increasing trends on the fumarolic CO<sub>2</sub>/St, He/CO<sub>2</sub>, CO/CO<sub>2</sub> and CO<sub>2</sub>/CH<sub>4</sub> ratios were recorded during the period 2010-2011 whereas increasing SO<sub>2</sub>/H<sub>2</sub>S, H<sub>2</sub>/CO<sub>2</sub> ratios were recorded during the period 2017-2018. A decreasing on the CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/St ratios was observed for 2017-2018. These changes are attributed to an increased contribution of magmatic fluids to the hydrothermal system in both periods. Observed changes in H<sub>2</sub> and CO contents suggest increases in temperature and pressure in the upper parts of the hydrothermal system of Taal volcano. The <sup>3</sup>He/<sup>4</sup>He ratios corrected (Rc/Ra), and δ<sup>13</sup>C of fumarolic gases also increased during the periods 2010-2011 and 2017-2018 before the eruption onset. During this study, diffuse CO<sub>2</sub> emission values measured at TMCL showed a wide range of values from >0.5 g m<sup>−2</sup> d<sup>−1</sup> up to 84,902 g m<sup>−2</sup> d<sup>−1</sup>. The observed relatively high and anomalous diffuse CO<sub>2</sub> emission rate across the ~12 years reached values of 4,670 ± 159 t d<sup>-1 </sup>on March 24, 2011, and 3,858 ± 584 t d<sup>-1</sup> on November 11, 2017. The average value of the soil CO<sub>2</sub> efflux data measured by the geochemical station showed oscillations around background values until 14 March, 2017. Since then at 22:00 hours, a sharp increase of soil CO<sub>2</sub> efflux from ~0.1 up to 1.1 kg m<sup>-2</sup> d<sup>-1</sup> was measured in 9 hours and continued to show a sustained increase in time up to 2.9 kg m<sup>-2</sup> d<sup>-1</sup> in 2 November, that represents the main long-term variation of the soil CO<sub>2</sub> emission time series. All the above variations might be produced by two episodes of magmatic intrusion which favored degassing of a gas-rich magma at depth. During the 2010-2011 the magmatic intrusion of volatile-rich magma might have occurred from the mid-crustal storage region at shallower depths producing important changes in pressure and temperature conditions, whereas a new injection of more degassed magma into the deepest zone of the hydrothermal system occurring in 2017-2018 might have favored the accumulation of gases in the subsurface, promoting conditions leading to a phreatic eruption. These geochemical observations are most simply explained by magma recharge to the system, and represent the earliest warning precursor signals to the January 2020 eruptive activity.</p><p>Arpa, M.C., et al., 2013. Bull. Volcanol. 75, 747. https://doi.org/10.1007/s00445-013-0747-9.</p><p>Hernández, P.A., et al.,  2017. Geol. Soc. Lond. Spec. Publ. 437:131–152. https://doi.org/10.1144/SP437.17.</p>


RSC Advances ◽  
2019 ◽  
Vol 9 (33) ◽  
pp. 19164-19170
Author(s):  
Su-Ying Yan ◽  
Yu-Jie Wang ◽  
Heng Mao ◽  
Zhi-Ping Zhao

A PP membrane prepared via TIPS using CO/SO as environmentally friendly binary diluents to remove low-concentration CO2 from RO effluent water.


Sign in / Sign up

Export Citation Format

Share Document