Heavy metal concentrations in bottom ash and fly ash fractions from a large-sized (246MW) fluidized bed boiler with respect to their Finnish forest fertilizer limit values

2010 ◽  
Vol 91 (11) ◽  
pp. 1634-1639 ◽  
Author(s):  
Olli Dahl ◽  
Hannu Nurmesniemi ◽  
Risto Pöykiö ◽  
Gary Watkins
2002 ◽  
Vol 11 (4) ◽  
pp. 285-300 ◽  
Author(s):  
V. MÄNTYLAHTI ◽  
P. LAAKSO

Increasing concentrations of arsenic and heavy metals in agricultural soils are becoming a growing problem in industrialized countries. These harmful elements represent the basis of a range of problems in the food chain, and are a potential hazard for animal and human health. It is therefore important to gauge their absolute and relative concentrations in soils that are used for crop production. In this study the arsenic and heavy metal concentrations in 274 mineral soil samples and 38 organogenic soil samples taken from South Savo province in 2000 were determined using the aqua regia extraction technique. The soil samples were collected from 23 farms.The elements analyzed were arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc. The median concentrations in the mineral soils were:As 2.90 mg kg –1, Cd 0.084 mg kg –1, Cr 17.0 mg kg –1, Cu 13.0 mg kg –1, Hg 0.060 mg kg –1, Ni 5.4 mg kg –1, Pb 7.7 mg kg –1, Zn 36.5 mg kg –1. The corresponding values in the organogenic soils were:As 2.80 mg kg –1, Cd 0.265 mg kg –1, Cr 15.0 mg kg –1, Cu 29.0 mg kg –1, Hg 0.200 mg kg –1, Ni 5.9 mg kg –1, Pb 11.0 mg kg –1, Zn 25.5 mg kg –1. The results indicated that cadmium and mercury concentrations in the mineral and organogenic soils differed. Some of the arsenic, cadmium and mercury concentrations exceeded the normative values but did not exceed limit values. Most of the agricultural fields in South Savo province contained only small amounts of arsenic and heavy metals and could be classified as “Clean Soil”. A draft for the target values of arsenic and heavy metal concentrations in “Clean Soil” is presented.;


Soil Research ◽  
2005 ◽  
Vol 43 (7) ◽  
pp. 853 ◽  
Author(s):  
R. W. McDowell

Phosphorus (P) loss from soils can impair surface water quality. A study was conducted to test the efficacy of fly-ash to decrease phosphorus loss in 11 grassland soils. A preliminary toxicity and leaching experiment indicated that heavy metal concentrations (As, Cd, Pb, Se) in leachate and pasture from a soil treated with ash up to 50 mg/kg were not different from the control (unamended soil). Heavy metal concentrations in the ash were generally below limits for maximum concentrations in soil. Following incubation of fly ash at a rate of 20 mg/kg for 3 months with 11 grassland soils packed into boxes, overland flow was generated by simulated rainfall on each boxed soil. Analysis of overland flow indicated that in 2 semi-arid soils, P loss decreased due to decreased particulate P (PP) loss and low organic C concentration (<20 g/kg) that facilitated soil dispersion and slaking and increased soil strength. However, in 4 other soils (including 3 volcanic-ash soils with organic C >70 g/kg), P loss increased due to increased soil pH from 6 to 7 where P is most soluble. In all soils, despite an increase in P in recalcitrant soil P fractions, increased soil pH stimulated soil C and P mineralisation (decreased organic C by, on average, 4.1 g/kg), decreased soil organic P, and increased inorganic P in labile fractions. It is concluded that the application of fly-ash from this source should not be used as an amendment to decrease P loss in pastures where soil pH is commonly <6.0, but could provide useful both as a supplement to lime and in mitigating P loss in cropping soils.


Geologija ◽  
2008 ◽  
Vol 50 (4) ◽  
pp. 237-245 ◽  
Author(s):  
Audronė Jankaitė ◽  
Pranas Baltrėnas ◽  
Agnė Kazlauskienė

Author(s):  
Liping Li ◽  
Yuqing Zhang ◽  
James A. Ippolito ◽  
Weiqin Xing ◽  
Chen Tu

Sign in / Sign up

Export Citation Format

Share Document