PAHs and potentially toxic elements in the fly ash and bed ash of biomass fired power plants

2015 ◽  
Vol 132 ◽  
pp. 139-152 ◽  
Author(s):  
Reginald E. Masto ◽  
Elina Sarkar ◽  
Joshy George ◽  
Kumari Jyoti ◽  
Pashupati Dutta ◽  
...  
2021 ◽  
pp. e00370
Author(s):  
Bartłomiej Glina ◽  
Joanna Beata Kowalska ◽  
Katarzyna Łuczak ◽  
Ryszard Mazurek ◽  
Waldemar Spychalski ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1066
Author(s):  
Małgorzata Wawer

Solid fossil fuel power plants are the main source of energy in Poland. In 2018, the most important energy carrier was hard coal with a share of 57.9%, followed by lignite with a share of 18.1%. In addition to CO2, NOx and SOx, the combustion of fossil fuels produces dusts containing, among others, potentially toxic elements (PTEs), e.g., Pb, Zn, Cu, Cr, Cd. Although the currently operating power plants have efficient filter systems, the total dust emission in Poland in 2017 amounted to 341,000 t, of which approximately 36,000 t was from the power plants. PTEs present in the power plant dust are often accompanied by technogenic magnetic particles (TMPs)—mainly iron oxides and hydroxides formed in high-temperature technological processes as a result of the transformations of iron minerals contained in raw materials and additives. The presence of magnetic iron minerals (e.g., magnetite, hematite, maghemite, metallic iron) in the tested ashes from hard coal and lignite power plants was confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) analysis. The sequential extraction analysis showed that most of the analyzed PTEs found in dust after hard coal combustion were mainly related to amorphous and crystalline FeOx or in the residual fraction and in dust after lignite combustion, mainly in the most mobile fractions.


2015 ◽  
Vol 6 (3) ◽  
pp. 382-391 ◽  
Author(s):  
Masindi Vhahangwele ◽  
Gitari W. Mugera ◽  
Tutu Hlanganani

Fly ash contains the potentially toxic elements As, B, Cr, Mo and Se which upon contact with water may be leached to contaminate surface and subsurface water bodies. This study aims to evaluate the adsorption of these elements from coal fly ash leachates on Fe3+-modified bentonite (Fe-Bent); such modification improved the physicochemical properties of bentonite clay. For optimization of adsorption of the five elements, the effects of time, adsorbent dosage, adsorbate concentration, and pH were optimized. Adsorption affinity of oxyanions followed in the order B = Se > Mo > Cr = As. Experimental data fitted well to Langmuir and Freundlich adsorption isotherms.


2020 ◽  
Author(s):  
Sarah Hayes ◽  
◽  
Kyle P. Milke ◽  
Kiana Mitchell ◽  
Jennifer Guerard

Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


2008 ◽  
Vol 7 (3) ◽  
pp. 289-293 ◽  
Author(s):  
Maria Harja ◽  
Marinela Barbuta ◽  
Lacramioara Rusu ◽  
Nicolae Apostolescu
Keyword(s):  
Fly Ash ◽  

Sign in / Sign up

Export Citation Format

Share Document