scholarly journals In situ catalytic fast pyrolysis of lignin over biochar and activated carbon derived from the identical process

2022 ◽  
Vol 227 ◽  
pp. 107103
Author(s):  
Hanmin Yang ◽  
Tong Han ◽  
Ziyi Shi ◽  
Yunjuan Sun ◽  
Jianchun Jiang ◽  
...  
2017 ◽  
Vol 5 (11) ◽  
pp. 10815-10825 ◽  
Author(s):  
Xiao-ning Ye ◽  
Qiang Lu ◽  
Xin Wang ◽  
Hao-qiang Guo ◽  
Min-shu Cui ◽  
...  

2018 ◽  
Vol 5 (11) ◽  
pp. 23456-23465
Author(s):  
Suchithra Thangalazhy-Gopakumar ◽  
Chi Wei Lee ◽  
Suyin Gan ◽  
Hoon Kiat Ng ◽  
Lai Yee Lee

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1034
Author(s):  
Jaehun Jeong ◽  
Hyung Won Lee ◽  
Seong Ho Jang ◽  
Sumin Ryu ◽  
Young-Min Kim ◽  
...  

The in-situ catalytic fast pyrolysis of pinecone over HY catalysts, HY(30; SiO2/Al2O3), HY(60), and 1% Ni/HY(30), was studied by TGA and Py-GC/MS. Thermal and catalytic TGA indicated that the main decomposition temperature region of pinecone, from 200 to 400 °C, was not changed using HY catalysts. On the other hand, the DTG peak heights were differentiated by the additional use of HY catalysts. Py-GC/MS analysis showed that the efficient conversion of phenols and other oxygenates formed from the pyrolysis of pinecone to aromatic hydrocarbons could be achieved using HY catalysts. Of the HY catalysts assessed, HY(30), showed higher efficiency in the production of aromatic hydrocarbons than HY(60) because of its higher acidity. The aromatic hydrocarbon production was increased further by increasing the pyrolysis temperature from 500 to 600 °C and increasing the amount of catalyst due to the enhanced cracking ability and overall acidity. The use of 1% Ni/HY(30) also increased the amount of monoaromatic hydrocarbons compared to the use of HY(30) due to the additional role of Ni in enhancing the deoxygenation and aromatization of reaction intermediates.


2014 ◽  
Vol 541-542 ◽  
pp. 190-194 ◽  
Author(s):  
Zhi Bo Zhang ◽  
Xiao Ning Ye ◽  
Qiang Lu ◽  
Chang Qing Dong ◽  
Yong Qian Liu

Activated carbon (AC) was reported as a promising catalyst to selectively produce phenolic compounds from biomass using the micro-wave assisted catalytic pyrolysis technique. In order to evaluate the catalytic performance of the AC under the traditional fast pyrolysis process, analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technique was applied for the catalytic fast pyrolysis of biomass mixed with the AC. Polar wood was selected as the feedstock, and experiments were conducted to reveal the AC-catalyzed poplar wood pyrolysis behavior and product distribution. The results indicated that the AC was also effective for the phenolics production in the traditional fast pyrolysis process at 350 °C. It could promote the formation of phenolic compounds, and inhibit most of the other pyrolytic products. The maximal phenolics yield was obtained at the biomass to catalyst ratio of 1:4, with the peak area% over 50%.


Author(s):  
Bruce Adkins ◽  
Zachary Mills ◽  
James Parks ◽  
Michael Brennan Pecha ◽  
Peter N. Ciesielski ◽  
...  

Ex-situ Catalytic Fast Pyrolysis (CFP) uses a secondary reactor to upgrade biomass pyrolysis vapors to stabilized CFP oils with reduced oxygen content. In one configuration, the secondary reactor is operated...


Sign in / Sign up

Export Citation Format

Share Document