Measurement of effective thermal conductivity of lithium metatitanate pebble bed by transient hot-wire technique

2020 ◽  
Vol 158 ◽  
pp. 111718
Author(s):  
Maulik Panchal ◽  
Abhishek Saraswat ◽  
Shrikant Verma ◽  
Paritosh Chaudhuri
2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Vladimir Kutcherov ◽  
Alexey Chernoutsan ◽  
Anton Kolesnikov ◽  
Boris Grigoriev

The thermal conductivity of five samples of crude oil and one sample of gas condensate was measured by the transient hot-wire technique. The measurements were made along isotherms (245, 250, 273, 295, 320, 336, and 373 K) in the pressure range from atmospheric pressure up to 1000 MPa and along isobars (at 0.1, 100, 200, 300, 400, 500, and 1000 MPa) in the temperature range 245–450 K. It was observed that the thermal conductivity of the samples investigated strongly depends on the pressure and rises with increasing pressure for all the temperatures. At a certain pressure, the temperature coefficient of thermal conductivity reverses from negative to positive. The pressure at which this reversal was observed varied in the range of 300–380 MPa.


Author(s):  
D. Kwek ◽  
A. Crivoi ◽  
Fei Duan

The effective thermal conductivity of Al2O3-water nanofluids has been measured using a transient hot wire method. Experimental results demonstrate that the thermal conductivity of Al2O3 nanofluids increases linearly with increasing nanoparticle concentration. Adding 5 vol % of Al2O3 nanoparticles in water increases the effective thermal conductivity of the nanofluids by 20%. Thermal conductivity of Al2O3 nanofluids increases with an increase of temperature. The enhancement is around 1.7% at 15 °C in comparison with around 16% at 55 °C in a 1 vol % nanofluid. The particle size is another important parameter for the effective thermal conductivity. The increase of thermal conductivity reduces from 30% to 10% as the particle sizes increase from 10 nm to 35 nm. The increase of the effective thermal conductivity starts as the particle size increases above 35 nm, reaching about 27.5% in the nanofluid with the particle size at 150 nm.


Sign in / Sign up

Export Citation Format

Share Document