Three-dimensional whole-body gait analysis: an investigation into the fundamental problem of inverse dynamics

2009 ◽  
Vol 30 ◽  
pp. S78-S79 ◽  
Author(s):  
Lei Ren ◽  
David Howard ◽  
Amaraporn Boonpratatong
Author(s):  
Miguel Silva ◽  
Jorge Ambro´sio

The use of inverse dynamics methodologies for the evaluation of intersegmental reaction forces and the moments-of-force at the anatomical joints, in the framework of gait analysis, not only requires that appropriate biomechanical models are used but also that kinematic and kinetic data sets are available. This paper discusses the quality of the results of the inverse dynamics analysis with respect to the filtering procedures used and the kinematic consistency of the position, velocity and acceleration data. A three-dimensional whole body response biomechanical model based on a multibody formulation with natural coordinates is used. The model has 16 anatomical segments that are described using 33 rigid bodies in a total of 44 degrees-of-freedom. In biomechanical applications, one of the advantages of the current formulation is that the set of anatomical points used to reconstruct the spatial motion of the subject is also used to construct the set of natural coordinates that describe the biomechanical model itself. Based on the images collected by four synchronized video cameras, the three-dimensional trajectories of the anatomical points are reconstructed using standard photogrammetry techniques and Direct Linear Transformations. The trajectories obtained are then filtered in order to reduce the noise levels introduced during the reconstruction procedure using 2nd order Butterworth low-pass filters with properly chosen cut-off frequencies. The filtered data is used in the inverse dynamics analysis either directly or after being modified in order to ensure its consistency with the biomechanical model’s kinematic constraints. It is also shown that the use of velocities and accelerations consistent with the kinematic constraints or those obtained through the time derivatives of the spline interpolation curves of the reconstructed trajectories lead to similar results.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


2017 ◽  
Vol 38 (2) ◽  
pp. 808-816 ◽  
Author(s):  
Salam Rahmatalla ◽  
Jonathan DeShaw ◽  
Khalid Barazanji

This work investigates the effect of the contact surfaces on the biomechanical response of supine humans during whole-body vibration and shocks. Twelve participants were exposed to three-dimensional random vibration and shocks and were tested with two types of contact surfaces: (i) litter only, and (ii) litter with spinal board. The two configurations were tested with and without body straps to secure the supine human. The addition of the spinal board reduced the involuntary motion of the supine humans in most directions. There were significant reductions in the relative vertical accelerations at the neck and torso areas, especially during shocks ( p < 0.01). The inclusion of body straps with the spinal board was more effective in reducing the relative motion in most directions when shocks were presented. This study shows that the ergonomic design of the human transport system and the underlying contacting surfaces should be studied during dynamic transport environments.


Author(s):  
Stefan Reichl ◽  
Wolfgang Steiner

This work presents three different approaches in inverse dynamics for the solution of trajectory tracking problems in underactuated multibody systems. Such systems are characterized by less control inputs than degrees of freedom. The first approach uses an extension of the equations of motion by geometric and control constraints. This results in index-five differential-algebraic equations. A projection method is used to reduce the systems index and the resulting equations are solved numerically. The second method is a flatness-based feedforward control design. Input and state variables can be parameterized by the flat outputs and their time derivatives up to a certain order. The third approach uses an optimal control algorithm which is based on the minimization of a cost functional including system outputs and desired trajectory. It has to be distinguished between direct and indirect methods. These specific methods are applied to an underactuated planar crane and a three-dimensional rotary crane.


2014 ◽  
Vol 14 (06) ◽  
pp. 1440003
Author(s):  
KAP-SOO HAN ◽  
CHANG HO YU ◽  
MYOUNG-HWAN KO ◽  
TAE KYU KWON

The objective of the study was to investigate the effects of 3D stabilization exercises using a whole body tilt device on forces in the trunk, such as individual muscle forces and activation patterns, maximum muscle activities and spine loads. For this sake, a musculoskeletal (MS) model of the whole body was developed, and an inverse dynamics analysis was performed to predict the forces on the spine. An EMG measurement experiment was conducted to validate the muscle forces and activation patterns. The MS model was rotated and tilted in eight different directions: anterior (A), posterior (P), anterior right (AR), posterior right (PR), anterior left (AL), posterior left (PL), right (R) and left (L), replicating the directions of the 3D spine balance exercise device, as performed in the experiment. The anterior directions of the tilt primarily induced the activation of long and superficial back muscles and the posterior directions activated the front muscles. However, deep muscles, such as short muscles and multifidi, were activated in all directions of the tilt. The resultant joint forces in the right and left directions of the tilt were the least among the directions, but higher muscle activations and more diverse muscle recruitments than other positions were observed. Therefore, these directions of tilt may be suitable for the elderly and rehabilitation patients who require muscle strengthening with less spinal loads. In the present investigation, it was shown that 3D stabilization exercises could provide considerable muscle exercise effects with a minimum perturbation of structure. The results of this study can be used to provide safety guidelines for muscle exercises using this type of tilting device. Therefore, the proposed direction of tilt can be used to strengthen targeted muscles, depending on the patients' muscular condition.


Sign in / Sign up

Export Citation Format

Share Document