Identification and quantification of muscle activation patterns in lower limb muscles of children with spastic cerebral palsy

2014 ◽  
Vol 39 ◽  
pp. S30-S31
Author(s):  
L. Bar-On ◽  
E. Aertbeliën ◽  
G. Molenaers ◽  
C. Huenaerts ◽  
A. Van Campenhout ◽  
...  
2017 ◽  
Vol 57 ◽  
pp. 114-115
Author(s):  
Britta Hanssen ◽  
Simon-Henri Schless ◽  
Marije Goudriaan ◽  
Lynn Bar-On ◽  
Kaat Desloovere

Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 465
Author(s):  
Ukadike C. Ugbolue ◽  
Emma L. Yates ◽  
Kerensa Ferguson ◽  
Scott C. Wearing ◽  
Yaodong Gu ◽  
...  

Only a small number of muscle activation patterns from lower limbs have been reported and simultaneous muscle activation from several lower limb muscles have not yet been investigated. The purpose of this study was to examine any gender differences in surface electromyography (EMG) activity from six recorded lower limb muscles of the dominant limb at baseline (i.e., with the foot placed flat on the floor and in the neutral position), and during concentric and eccentric phases when performing a heel raise task. In total, 10 females and 10 males performed a standing heel raise task comprising of three continuous phases: baseline, unloading (concentric muscle action), and loading (eccentric muscle action) phases. Muscle activation from six muscles (gastrocnemius medialis, gastrocnemius lateralis, soleus, tibialis anterior, peroneus longus, and peroneus brevis) were measured using the Myon 320 EMG System. Root mean squared values of each muscle were calculated for each phase. Descriptive and inferential statistics were incorporated into the study. Statistically significant p values were set at 0.05. The results showed no significant differences between baseline, concentric, and eccentric phases with respect to each of the muscles investigated. Except for the gastrocnemius medialis at baseline and concentric phases, no significant differences were observed between genders or contractions. The data suggests that gender does not significantly influence the eccentric phase during the standing heel raise task.


2020 ◽  
Vol 81 ◽  
pp. 267-268
Author(s):  
N. Peeters ◽  
B. Hanssen ◽  
N. De Beukelaer ◽  
T. Dewit ◽  
G. Weide ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
Sami Kaartinen ◽  
Mika Venojärvi ◽  
Kim J Lesch ◽  
Heikki Tikkanen ◽  
Paavo Vartiainen ◽  
...  

2013 ◽  
Vol 109 (8) ◽  
pp. 1996-2006 ◽  
Author(s):  
Hidehito Tomita ◽  
Yoshiki Fukaya ◽  
Kenji Totsuka ◽  
Yuri Tsukahara

This study aimed to determine whether individuals with spastic diplegic cerebral palsy (SDCP) have deficits in anticipatory inhibition of postural muscle activity. Nine individuals with SDCP (SDCP group, 3 female and 6 male, 13–24 yr of age) and nine age- and sex-matched individuals without disability (control group) participated in this study. Participants stood on a force platform, which was used to measure the position of the center of pressure (CoP), while holding a light or heavy load in front of their bodies. They then released the load by abducting both shoulders. Surface electromyograms were recorded from the rectus abdominis, erector spinae (ES), rectus femoris (RF), medial hamstring (MH), tibialis anterior (TA), and gastrocnemius (GcM) muscles. In the control group, anticipatory inhibition before load release and load-related modulation of the inhibition were observed in all the dorsal muscles recorded (ES, MH, and GcM). In the SDCP group, similar results were obtained in the trunk muscle (ES) but not in the lower limb muscles (MH and GcM), although individual differences were seen, especially in MH. Anticipatory activation of the ventral lower limb muscles (RF and TA) and load-related modulation of the activation were observed in both participant groups. CoP path length during load release was longer in the SDCP group than in the control group. The present findings suggest that individuals with SDCP exhibit deficits in anticipatory inhibition of postural muscles at the dorsal part of the lower limbs, which is likely to result in a larger disturbance of postural equilibrium.


2016 ◽  
Vol 25 (2) ◽  
pp. 164-172 ◽  
Author(s):  
Cindy Y. Lin ◽  
Liang-Ching Tsai ◽  
Joel Press ◽  
Yupeng Ren ◽  
Sun G. Chung ◽  
...  

Context:Gluteal-muscle strength has been identified as an important component of injury prevention and rehabilitation in several common knee injuries. However, many conventionally prescribed gluteal-strengthening exercises are not performed during dynamic weight-bearing activities, which is when most injuries occur.Objectives:To compare lower-limb muscle-activation patterns between conventional gluteal-strengthening exercises and off-axis elliptical exercises with motorized foot-plate perturbations designed to activate gluteal muscles during dynamic exercise.Evidence Acquisition:Twelve healthy volunteers (26.1 ± 4.7 y) participated in the study. They performed 3 conventional exercises (single-leg squat, forward lunge, and clamshell) and 3 elliptical exercises (regular, while resisting an adduction force, and while resisting an internal-rotation torque). Gluteus medius (GMed) and maximus (GMax), quadriceps, hamstrings, and gastrocnemius muscle activations during each exercise were recorded using surface electromyography (EMG) and normalized to maximal voluntary isometric contraction (MVIC).Evidence Synthesis:Normalized GMed EMG was the highest during the adduction-resistance elliptical exercise (22.4% ± 14.8% MVIC), significantly greater than forward lunge (8.2% ± 3.8% MVIC) and regular elliptical (6.4% ± 2.5% MVIC) and similar to clamshell (19.1% ± 8.8% MVIC) and single-leg squat (18.4% ± 7.9% MVIC). Normalized GMax EMG during adduction-resistance (11.1% ± 7.6% MVIC) and internal-rotation-resistance elliptical (7.4% ± 3.8% MVIC) was significantly greater than regular elliptical (4.4% ± 2.4% MVIC) and was similar to conventional exercises. The single-leg squat required more muscle activation from the quadriceps and gastrocnemius than the elliptical exercises.Conclusions:Off-axis elliptical exercise while resisting an adduction force or internal-rotation torque activates gluteal muscles dynamically while avoiding excessive quadriceps activation during a functional weight-bearing activity compared with conventional gluteal-strengthening exercises.


Sign in / Sign up

Export Citation Format

Share Document