Concurrent validity and reliability of using ground reaction force and center of pressure parameters in the determination of leg movement initiation during single leg lift

2016 ◽  
Vol 49 ◽  
pp. 346-352 ◽  
Author(s):  
Daniela Aldabe ◽  
Marcelo Peduzzi de Castro ◽  
Stephan Milosavljevic ◽  
Melanie Dawn Bussey
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fabian Horst ◽  
Djordje Slijepcevic ◽  
Marvin Simak ◽  
Wolfgang I. Schöllhorn

AbstractThe Gutenberg Gait Database comprises data of 350 healthy individuals recorded in our laboratory over the past seven years. The database contains ground reaction force (GRF) and center of pressure (COP) data of two consecutive steps measured - by two force plates embedded in the ground - during level overground walking at self-selected walking speed. The database includes participants of varying ages, from 11 to 64 years. For each participant, up to eight gait analysis sessions were recorded, with each session comprising at least eight gait trials. The database provides unprocessed (raw) and processed (ready-to-use) data, including three-dimensional GRF and two-dimensional COP signals during the stance phase. These data records offer new possibilities for future studies on human gait, e.g., the application as a reference set for the analysis of pathological gait patterns, or for automatic classification using machine learning. In the future, the database will be expanded continuously to obtain an even larger and well-balanced database with respect to age, sex, and other gait-specific factors.


2012 ◽  
Vol 47 (3) ◽  
pp. 306-313 ◽  
Author(s):  
Erik A. Wikstrom

Context:Interactive gaming systems have the potential to help rehabilitate patients with musculoskeletal conditions. The Nintendo Wii Balance Board, which is part of the Wii Fit game, could be an effective tool to monitor progress during rehabilitation because the board and game can provide objective measures of balance. However, the validity and reliability of Wii Fit balance scores remain unknown.Objective:To determine the concurrent validity of balance scores produced by the Wii Fit game and the intrasession and intersession reliability of Wii Fit balance scores.Design:Descriptive laboratory study.Setting:Sports medicine research laboratory.Patients or Other Participants:Forty-five recreationally active participants (age  =  27.0 ± 9.8 years, height  =  170.9 ± 9.2 cm, mass  =  72.4 ± 11.8 kg) with a heterogeneous history of lower extremity injury.Intervention(s):Participants completed a single-limb–stance task on a force plate and the Star Excursion Balance Test (SEBT) during the first test session. Twelve Wii Fit balance activities were completed during 2 test sessions separated by 1 week.Main Outcome Measure(s):Postural sway in the anteroposterior (AP) and mediolateral (ML) directions and the AP, ML, and resultant center-of-pressure (COP) excursions were calculated from the single-limb stance. The normalized reach distance was recorded for the anterior, posteromedial, and posterolateral directions of the SEBT. Wii Fit balance scores that the game software generated also were recorded.Results:All 96 of the calculated correlation coefficients among Wii Fit activity outcomes and established balance outcomes were interpreted as poor (r < 0.50). Intrasession reliability for Wii Fit balance activity scores ranged from good (intraclass correlation coefficient [ICC]  =  0.80) to poor (ICC  =  0.39), with 8 activities having poor intrasession reliability. Similarly, 11 of the 12 Wii Fit balance activity scores demonstrated poor intersession reliability, with scores ranging from fair (ICC  =  0.74) to poor (ICC  =  0.29).Conclusions:Wii Fit balance activity scores had poor concurrent validity relative to COP outcomes and SEBT reach distances. In addition, the included Wii Fit balance activity scores generally had poor intrasession and intersession reliability.


2002 ◽  
Vol 12 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Andreas Hofmann ◽  
Marko Popovic ◽  
Hugh Herr

A three-dimensional numerical model of human standing is presented that reproduces the dynamics of simple swaying motions while in double-support. The human model is structurally realistic, having both trunk and two legs with segment lengths and mass distributions defined using human morphological data from the literature. In this investigation, model stability in standing is achieved through the application of a high-level reduced-order control system where stabilizing forces are applied to the model's trunk by virtual spring- damper elements. To achieve biologically realistic model dynamics, torso position and ground reaction force data measured on human subjects are used as demonstration data in a supervised learning strategy. Using Powell's method, the error between simulation data and measured human data is minimized by varying the virtual high-level force field. Once optimized, the model is shown to track torso position and ground reaction force data from human demonstrations. With only these limited demonstration data, the humanoid model sways in a biologically realistic manner. The model also reproduces the center-of-pressure trajectory beneath the foot, even though no error term for this is included in the optimization algorithm. This indicates that the error terms used (the ones for torso position and ground reaction force) are sufficient to compute the correct joint torques such that independent metrics, like center-of-pressure trajectory, are correct.


2013 ◽  
Vol 29 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Xu-Shu Zhang ◽  
Yuan Guo ◽  
Mei-Wen An ◽  
Wei-Yi Chen

2015 ◽  
Vol 23 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Mark G.L. Sayers ◽  
Amanda L. Tweddle ◽  
Jessika Morris

This project assessed dynamic balance and stability in aged lawn bowlers during the delivery stride. Participants were divided into two groups: aged 65 years or less (n = 14) and aged over 65 years (n = 16). Standard balance-based center of pressure (CoP) and ground reaction force variables were recorded and a Dynamic Postural Stability Index (DPSI) was used for calculating during ten deliveries. None of the balance variables correlated significantly with age although years of bowling experience correlated with DPSI scores (r = -.42, P = .019). The over 65 group had significantly greater variance in the mediolateral CoP movements, with no other significant differences in balance or postural stability variables between groups. Analysis of covariance indicated that the DPSI data were influenced significantly by bowling experience regardless of age group. It was concluded that in older aged lawn bowlers, playing experience rather than age is a key determinant of balance control during the lawn bowls delivery action.


2012 ◽  
Vol 28 (4) ◽  
pp. 473-478 ◽  
Author(s):  
Yun Wang ◽  
Kazuhiko Watanabe

The notion of limb dominance has been commonly used in the upper extremity, yet the two lower extremities are often treated as equal for analytical purposes. Attempts to determine the effects of limb laterality on gait have produced conflicting results. The purpose of this study was to determine if limb dominance affects the vertical ground reaction force and center of pressure (COP) during able-bodied gait. The Parotec system (Paromed GmbH, Germany) was used to collect plantar foot pressure data. Fifteen subjects volunteered to participate in this study. The coefficient of variation of the COP displacement in the mediolateral direction and the variability of peak force beneath the lateral forefoot in the nondominant foot were significant greater than in the dominant foot. Moreover, COP velocity in the anterior-posterior direction during the terminal stance phase showed greater value in the dominant foot. Our study provides support for limb laterality by showing limb dominance affected the vertical ground reaction force and center of pressure during walking gait. This finding suggests it is an important issue in movement science for clinicians and would assist in improving sports performance and rehabilitation program.


2020 ◽  
Vol 15 (5) ◽  
pp. 056002
Author(s):  
Steffen Schütz ◽  
Atabak Nejadfard ◽  
Navid Dorosti ◽  
Karsten Berns

Author(s):  
Gustavo Balbinot ◽  
Alberito Rodrigo De Carvalho ◽  
Clarissa Pedrini Schuch ◽  
Renata Luisa Bona ◽  
Carlos Gabriel Fábrica ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document