scholarly journals Validity and Reliability of Nintendo Wii Fit Balance Scores

2012 ◽  
Vol 47 (3) ◽  
pp. 306-313 ◽  
Author(s):  
Erik A. Wikstrom

Context:Interactive gaming systems have the potential to help rehabilitate patients with musculoskeletal conditions. The Nintendo Wii Balance Board, which is part of the Wii Fit game, could be an effective tool to monitor progress during rehabilitation because the board and game can provide objective measures of balance. However, the validity and reliability of Wii Fit balance scores remain unknown.Objective:To determine the concurrent validity of balance scores produced by the Wii Fit game and the intrasession and intersession reliability of Wii Fit balance scores.Design:Descriptive laboratory study.Setting:Sports medicine research laboratory.Patients or Other Participants:Forty-five recreationally active participants (age  =  27.0 ± 9.8 years, height  =  170.9 ± 9.2 cm, mass  =  72.4 ± 11.8 kg) with a heterogeneous history of lower extremity injury.Intervention(s):Participants completed a single-limb–stance task on a force plate and the Star Excursion Balance Test (SEBT) during the first test session. Twelve Wii Fit balance activities were completed during 2 test sessions separated by 1 week.Main Outcome Measure(s):Postural sway in the anteroposterior (AP) and mediolateral (ML) directions and the AP, ML, and resultant center-of-pressure (COP) excursions were calculated from the single-limb stance. The normalized reach distance was recorded for the anterior, posteromedial, and posterolateral directions of the SEBT. Wii Fit balance scores that the game software generated also were recorded.Results:All 96 of the calculated correlation coefficients among Wii Fit activity outcomes and established balance outcomes were interpreted as poor (r < 0.50). Intrasession reliability for Wii Fit balance activity scores ranged from good (intraclass correlation coefficient [ICC]  =  0.80) to poor (ICC  =  0.39), with 8 activities having poor intrasession reliability. Similarly, 11 of the 12 Wii Fit balance activity scores demonstrated poor intersession reliability, with scores ranging from fair (ICC  =  0.74) to poor (ICC  =  0.29).Conclusions:Wii Fit balance activity scores had poor concurrent validity relative to COP outcomes and SEBT reach distances. In addition, the included Wii Fit balance activity scores generally had poor intrasession and intersession reliability.

2004 ◽  
Vol 13 (3) ◽  
pp. 255-268 ◽  
Author(s):  
Lyn Nakagawa ◽  
Mark Hoffman

Objective:To evaluate postural control in individuals with recurrent ankle sprains with static, dynamic, and clinical balance tests and to examine the relationships between performances in each of these tests.Design:Postural control was evaluated with 3 different balance tests in individuals with and without recurrent ankle sprains.Participants:19 volunteers with recurrent ankle sprains and 19 uninjured control subjects.Interventions:None.Setting:University sports-medicine research laboratory.Main Outcome Measures:Total excursion of the center of pressure (COP) was calculated for the static and dynamic balance tests. Total reach distance was measured for the Star Excursion Balance Test.Results:Subjects with recurrent ankle sprains demonstrated significantly greater excursion of the COP in both the static and dynamic balance tests. Correlations between performances in all tests were very low.Conclusions:Recurrent ankle sprains might be associated with reduced postural control as demonstrated by decreased performance in static and dynamic balance tests.


Author(s):  
Jonathan J. Negus ◽  
Donald Cawthorne ◽  
Ross Clark ◽  
Oliver Negus ◽  
Joshua Xu ◽  
...  

2019 ◽  
Vol 11 (5) ◽  
pp. 409-415 ◽  
Author(s):  
Fábio Carlos Lucas de Oliveira ◽  
Anny Fredette ◽  
Sherezada Ochoa Echeverría ◽  
Charles Sebiyo Batcho ◽  
Jean-Sébastien Roy

Context: Two-dimensional (2D) video-based analysis is often used by clinicians to examine the foot strike pattern (FSP) and step rate in runners. Reliability and validity of 2D video-based analysis have been questioned. Objective: To synthesize the psychometric properties of 2D video-based analysis for assessing runners’ FSP and step rate while running. Data Sources: Medline/PubMed, Science Direct, Embase, EBSCOHost/CINAHL, and Scielo were searched from their inception to August 2018. Study Selection: Studies were included if (1) they were published in English, French, Portuguese or Spanish; (2) they reported at least 1 psychometric property (validity and/or reliability) of 2D video-based analysis to assess running kinematics; and (3) they assessed FSP or step rate during running. Study Design: Systematic review. Level of Evidence: Level 2. Data Extraction: Studies were screened for methodological (MacDermid checklist) and psychometric quality (COSMIN checklist) by 2 independent raters. Results: Eight studies, with a total of 702 participants, were included. Seven studies evaluated the reliability of 2D video to assess FSP and found very good to excellent reliability (0.41 ≤ κ ≤ 1.00). Two studies reported excellent reliability for the calculation of step rate (0.75 ≤ intraclass correlation coefficient [ICC] ≤ 1.00). One study demonstrated excellent concurrent validity between 2D and 3D (gold standard) motion capture systems to determine FSP (Gwet agreement coefficient [AC] > 0.90; ICC > 0.90), and another study found excellent concurrent validity between 2D video and another device to calculate step rate (0.84 ≤ ICC ≤ 0.95). Conclusion: Strong evidence suggests that 2D video-based analysis is a reliable method for assessing FSP and quantifying step rate, regardless of the experience of the assessor. Limited evidence exists on the validity of 2D video-based analysis in determining FSP and calculating step rate during running.


2020 ◽  
pp. 1-7
Author(s):  
Alyssa Dittmer ◽  
David Tomchuk ◽  
David R. Fontenot

Context: Rounded shoulder posture is a common problem in the athletic population. Recently Kinesio tape has been utilized to improve balance, proprioception, and posture. However, the literature has been unable to provide definitive answers on the efficacy of Kinesio tape use. Objective: To determine the immediate effect of the limb rotational Kinesio tape application on the dynamic balance and proprioception of the shoulder measured by the Y-Balance Upper Quarter Test (YBT-UQ) in male collegiate athletes. Design: Cross-sectional. Setting: Sports medicine research laboratory.Participants: Nineteen healthy male collegiate National Association of Intercollegiate Athletics athletes (including rodeo, baseball, football, and soccer) with a mean age of 19.8 (1.4) years. Interventions: Subjects were randomized into Kinesio tape and non-Kinesio tape groups. The limb rotational Kinesio tape application was applied to the Kinesio tape group, while the non-Kinesio tape group received no intervention. Each group performed the YBT-UQ, which requires reaching in 3 directions in a push-up position, before and after the randomized intervention on a single day. Main Outcome Measures: The variables of interest included the maximum reach distance in each of the 3 directions and the composite score for both trials between the Kinesio tape and non-Kinesio tape groups. Each score was normalized against the subject’s limb length. Results: No statistically significant improvements in any YBT-UQ scores were observed following either the Kinesio tape or non-Kinesio tape intervention. Conclusions: Applying the limb rotational Kinesio tape technique did not improve immediate YBT-UQ scores in a male collegiate athletic population with rounded shoulder posture. The use of Kinesio tape to improve immediate closed kinetic chain function in male collegiate athletes with rounded shoulder posture cannot be supported.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 37 ◽  
Author(s):  
Christopher Buckley ◽  
M. Encarna Micó-Amigo ◽  
Michael Dunne-Willows ◽  
Alan Godfrey ◽  
Aodhán Hickey ◽  
...  

Asymmetry is a cardinal symptom of gait post-stroke that is targeted during rehabilitation. Technological developments have allowed accelerometers to be a feasible tool to provide digital gait variables. Many acceleration-derived variables are proposed to measure gait asymmetry. Despite a need for accurate calculation, no consensus exists for what is the most valid and reliable variable. Using an instrumented walkway (GaitRite) as the reference standard, this study compared the validity and reliability of multiple acceleration-derived asymmetry variables. Twenty-five post-stroke participants performed repeated walks over GaitRite whilst wearing a tri-axial accelerometer (Axivity AX3) on their lower back, on two occasions, one week apart. Harmonic ratio, autocorrelation, gait symmetry index, phase plots, acceleration, and jerk root mean square were calculated from the acceleration signals. Test–retest reliability was calculated, and concurrent validity was estimated by comparison with GaitRite. The strongest concurrent validity was obtained from step regularity from the vertical signal, which also recorded excellent test–retest reliability (Spearman’s rank correlation coefficients (rho) = 0.87 and Intraclass correlation coefficient (ICC21) = 0.98, respectively). Future research should test the responsiveness of this and other step asymmetry variables to quantify change during recovery and the effect of rehabilitative interventions for consideration as digital biomarkers to quantify gait asymmetry.


2020 ◽  
Vol 10 (11) ◽  
pp. 3805 ◽  
Author(s):  
Špela Bogataj ◽  
Maja Pajek ◽  
Slobodan Andrašić ◽  
Nebojša Trajković

This study aimed to examine the reliability, validity, and usefulness of the smartphone-based application, My Jump 2, against Optojump in recreationally active adults. Participants (18 women, 28.9 ± 5.6 years, and 26 men, 30.1 ± 10.6 years) completed squat jumps (SJ), counter-movement jumps (CMJ), and CMJ with arm swing (CMJAS) on Optojump and were simultaneously recorded using My Jump 2. To evaluate concurrent validity, jump height, calculated from flight time attained from each device, was compared for each jump type. Test-retest reliability was determined by replicating data analysis of My Jump 2 recordings on two occasions separated by two weeks. High test-retest reliability (Intraclass correlation coefficient (ICC) > 0.93) was observed for all measures in both male and female athletes. Very large correlations were observed between the My Jump 2 app and Optojump for SJ (r = 0.95, p = 0.001), CMJ (r = 0.98, p = 0.001), and CMJAS (r = 0.98, p = 0.001) in male athletes. Similar results were obtained for female recreational athletes for all jumps (r > 0.94, p = 0.001). The study results suggest that My Jump 2 is a valid, reliable, and useful tool for measuring vertical jump in recreationally active adults. Therefore, due to its simplicity and practicality, it can be used by practitioners, coaches, and recreationally-active adults to measure vertical jump performance with a simple test as SJ, CMJ, and CMJAS.


2018 ◽  
Vol 27 (5) ◽  
Author(s):  
Kelsey Picha ◽  
Carolina Quintana ◽  
Amanda Glueck ◽  
Matt Hoch ◽  
Nicholas R. Heebner ◽  
...  

Context: Reaction time (RT) is crucial to athletic performance. Therefore, when returning athletes to play following injury, it is important to evaluate RT characteristics ensuring a safe return. The Dynavision D2® system may be utilized as an assessment and rehabilitation aid in the determination of RT under various levels of cognitive load. Previous research has demonstrated good reliability of simple protocols when assessed following a 24- to 48-hour test–retest window. Expanding reliable test–retest intervals may further refine novel RT protocols for use as a diagnostic and rehabilitation tool. Objective: To investigate the test–retest reliability of a battery of 5 novel RT protocols at different time intervals. Design: Repeated measures/reliability. Setting: Interdisciplinary sports medicine research laboratory. Participants: Thirty healthy individuals. Methods: Participants completed a battery of protocols increasing in difficulty in terms of reaction speed requirement and cognitive load. Prior to testing, participants were provided 3 familiarization trials. All protocols required participants to hit as many lights as quickly as possible in 60 seconds. After completing the initial testing session (session 1), participants waited 1 hour before completing the second session (session 2). Approximately 2 weeks later (average 14 [4] d), the participants completed the same battery of tasks for the third session (session 3). Main Outcome Measures: The intraclass correlation coefficient, standard error of measurement, minimal detectable change, and repeated-measures analysis of variance were calculated for RT. Results: The intraclass correlation coefficient values for each of the 5 protocols illustrated good to excellent reliability between sessions 1, 2, and 3 (.75–.90). There were no significant differences across time points (F < 0.105, P > .05). Conclusions: The 1-hour and 14-day test–retest intervals are reliable for clinical assessment, expanding the time frames previously reported in the literature of when assessments can be completed reliably. This study provides novel protocols that challenge cognition in unique ways.


2016 ◽  
Vol 25 (4) ◽  
pp. 371-379 ◽  
Author(s):  
Robert H. Wellmon ◽  
Dawn T. Gulick ◽  
Mark L. Paterson ◽  
Colleen N. Gulick

Context:Smartphones are being used in a variety of practice settings to measure joint range of motion (ROM). A number of factors can affect the validity of the measurements generated. However, there are no studies examining smartphone-based goniometer applications focusing on measurement variability and error arising from the electromechanical properties of the device being used.Objective:To examine the concurrent validity and interrater reliability of 2 goniometric mobile applications (Goniometer Records, Goniometer Pro), an inclinometer, and a universal goniometer (UG).Design:Nonexperimental, descriptive validation study.Setting:University laboratory.Participants:3 physical therapists having an average of 25 y of experience.Main Outcome Measures:Three standardized angles (acute, right, obtuse) were constructed to replicate the movement of a hinge joint in the human body. Angular changes were measured and compared across 3 raters who used 3 different devices (UG, inclinometer, and 2 goniometric apps installed on 3 different smartphones: Apple iPhone 5, LG Android, and Samsung SIII Android). Intraclass correlation coefficients (ICCs) and Bland-Altman plots were used to examine interrater reliability and concurrent validity.Results:Interrater reliability for each of the smartphone apps, inclinometer and UG were excellent (ICC = .995–1.000). Concurrent validity was also good (ICC = .998–.999). Based on the Bland-Altman plots, the means of the differences between the devices were low (range = –0.4° to 1.2°).Conclusions:This study identifies the error inherent in measurement that is independent of patient factors and due to the smartphone, the installed apps, and examiner skill. Less than 2° of measurement variability was attributable to those factors alone. The data suggest that 3 smartphones with the 2 installed apps are a viable substitute for using a UG or an inclinometer when measuring angular changes that typically occur when examining ROM and demonstrate the capacity of multiple examiners to accurately use smartphone-based goniometers.


Author(s):  
Álvaro Velarde-Sotres ◽  
Antonio Bores-Cerezal ◽  
Marcos Mecías-Calvo ◽  
Stefanía Carvajal-Altamiranda ◽  
Julio Calleja-González

The articular evaluation of range of motion (ROM) is currently used to observe imbalance or limitations as possible risk factors or predispositions to suffer future injures. The main aim of this study is to verify the concurrent validity, reliability and reproducibility of the OctoBalance Test (OB) as a valid and reliable tool to measure articular ROM of the upper limb compared to the modified-Upper Quarter Y-Balance Test (mUQYBT). The twenty-five participants were male athletes. All of them were assessed with OB and mUQYBT in medial, superolateral, and inferolateral directions in both right and left arms with a three-minute break during these attempts. The process was repeated a second time with a week gap between measurements. Pearson correlation and linear logarithmic regression were used to examine the relationship between scores obtained with OB and mUQYBT. In order to verify the reliability, the intraclass correlation coefficient (ICC) was used (3.1). Concordance and reproducibility were assessed using Bland–Altman’s graph. A perfect correlation and an almost linear logarithmic regression (R2 = 0.97) were observed between both measurement systems, with values of 73.531 ± 21.226 cm in mUQYBT and 69.541 ± 16.330 cm in OB. The differences were minimal between week one and week two. The assessment with Bland’s graph showed the concordance and reproducibility of scores, showing the dispersion and the upper and lower limits. OB is shown as valid in comparison to the other test as a reliable and reproducible tool for the assessment of the articular ROM in the upper limb, and it could be used for the evaluation of injuries.


Sign in / Sign up

Export Citation Format

Share Document