scholarly journals Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas

2016 ◽  
Vol 185 ◽  
pp. 358-382 ◽  
Author(s):  
R. Hickey-Vargas ◽  
M. Sun ◽  
S. Holbik
2020 ◽  
Author(s):  
Kang Chen ◽  
Ming Tang ◽  
Suzzane Kay ◽  
Zaicong Wang ◽  
Zhaochu Hu ◽  
...  

Author(s):  
Chen-Hao Luo ◽  
Rui Wang ◽  
Roberto F. Weinberg ◽  
Zengqian Hou

Crustal growth is commonly associated with porphyry deposit formation whether in continental arcs or collisional orogens. The Miocene high-K calc-alkaline granitoids in the Gangdese belt in southern Tibet, associated with porphyry copper deposits, are derived from the juvenile lower crust with input from lithospheric mantle trachytic magmas, and are characterized by adakitic affinity with high-Sr/Y and La/Yb ratios as well as high Mg# and more evolved isotopic ratios. Researchers have argued, lower crust with metal fertilization was mainly formed by previous subduction-related modification. The issue is that the arc is composed of three stages of magmatism including Jurassic, Cretaceous, and Paleocene−Eocene, with peaks of activity at 200 Ma, 90 Ma, and ca. 50 Ma, respectively. All three stages of arc growth are essentially similar in terms of their whole-rock geochemistry and Sr-Nd-Hf isotopic compositions, making it difficult to distinguish Miocene magma sources. This study is based on ∼430 bulk-rock Sr-Nd isotope data and ∼270 zircon Lu-Hf isotope data and >800 whole-rock geochemistry analyses in a 900-km-long section of the Gangdese belt. We found large scale variations along the length of the arc where the Nd-Hf isotopic ratios of the Jurassic, Cretaceous, and Paleocene−Eocene arc rocks change differently from east to west. A significant feature is that the spatial distribution of Nd-Hf isotopic values of the Paleocene−Eocene arc magmas and the Miocene granitoids, including metallogenic ones, are “bell-shaped” from east to west, with a peak of εNd(t) and εHf(t) at ∼91°E. In contrast, the Jurassic and Cretaceous arc magmas have different isotopic distribution patterns as a function of longitude. The isotopic spatial similarity of the Paleocene−Eocene and Miocene suites suggests that the lower crust source of the metallogenic Miocene magmas is composed dominantly of the Paleocene−Eocene arc rocks. This is further supported by abundant inherited zircons dominated by Paleocene−Eocene ages in the Miocene rocks. Another important discovery from the large data set is that the Miocene magmatic rocks have higher Mg# and more evolved Sr-Nd-Hf isotopic compositions than all preceding magmatic arcs. These characteristics indicate that the involvement of another different source was required to form the Miocene magmatic rocks. Hybridization of the isotopically unevolved primary magmas with isotopically evolved, lithospheric mantle-derived trachytic magmas is consistent with the geochemical, xenolith, and seismic evidence and is essential for the Miocene crustal growth and porphyry deposit formation. We recognize that the crustal growth in the collisional orogen is a two-step process, the first is the subduction stage dominated by typical magmatic arc processes leading to lower crust fertilization, the second is the collisional stage dominated by partial melting of a subduction-modified lower crust and mixing with a lithospheric mantle-derived melt at the source depth.


2019 ◽  
Vol 525 ◽  
pp. 177-189 ◽  
Author(s):  
Marie-Anne Ancellin ◽  
Ivan Vlastélic ◽  
Pablo Samaniego ◽  
François Nauret ◽  
Abdelmouhcine Gannoun ◽  
...  

2020 ◽  
Author(s):  
Andrea Luca Rizzo ◽  
Massimo Coltorti ◽  
Barbara Faccini ◽  
Federico Casetta ◽  
Theodoros Ntaflos ◽  
...  

<p>The study of fluid inclusions (FI) composition (He, Ne, Ar, CO<sub>2</sub>) integrated with the petrography and mineral chemistry of mantle xenoliths representative of the Sub Continental Lithospheric Mantle (SCLM) is a unique opportunity for constraining its geochemical features and evaluating the processes and the evolution that modified its original composition. An additional benefit of this type of studies is the possibility of better constraining the composition of fluids rising through the crust and used for volcanic or seismic monitoring.  </p><p>In this respect, the volcanic areas of Eifel and Siebengebirge in Germany represent a great opportunity to test this scientific approach for three main reasons. First, these volcanic centers developed in the core of the Central European Volcanic Province where it is debated whether the continental rift was triggered by a plume (Ritter, 2007 and references therein). Second, Eifel and Siebengebirge formed in Quaternary (0.5-0.01 Ma) and Tertiary (30-6 Ma), respectively, thus spanning a wide range of age. Third, Eifel is characterized by the presence of CO<sub>2</sub>-dominated gas emissions and weak earthquakes that testify that local magmatic activity is nowadays dormant, but not ended (e.g., Bräuer et al., 2013). It is thus important to better constrain the noble gas signature expected in surface gases in case of magmatic unrest.</p><p>This work focuses on the petrological and geochemical study of mantle xenoliths sampled in the West Eifel and Siebengebirge volcanic areas (Germany) and aims at enlarging the knowledge of the local SCLM. Gautheron et al. (2005) carried out the first characterization of noble gases in FI of crystals analyzed by crushing technique (as in our study) but limited to olivines and to West Eifel eruptive centers. Here, we integrate that study by analyzing olivines, orthopyroxenes and clinopyroxenes from a new suite of samples and by including two eruptive centers from Siebengebirge volcanic field (Siebengebirge and Eulenberg quarries).</p><p>Xenoliths from the Siebengebirge localities are characterized by the highest Mg# for olivine, clinopyroxene and Cr# for spinel, together with the lowest Al<sub>2</sub>O<sub>3</sub> contents for both pyroxenes, suggesting  that the mantle beneath Siebengebirge experienced high degree of melt extraction (up to 30%) while metasomatic/refertilization events were more efficient in the mantle beneath West Eifel.</p><p>In terms of CO<sub>2</sub> and noble gas concentration, clinopyroxene and most of the orthopyroxene show the highest gas content, while olivine are gas-poor. The <sup>3</sup>He/<sup>4</sup>He varies between 5.5 and 6.9 Ra. These values are comparable to previous measurements in West Eifel, mostly within the range proposed for European SCLM (6.3±0.4 Ra), and slightly below that of MORB (Mid-Ocean Ridge Basalts; 8±1Ra). The Ne and Ar isotope ratios fall along a binary mixing trend between air and MORB-like mantle. He/Ar* in FI and Mg# and Al<sub>2</sub>O<sub>3</sub> content in minerals confirm that the mantle beneath Siebengebirge experienced the highest degree of melting, while the metasomatic/refertilization events largely affected the Eifel area.</p><p>References</p><p>Bräuer, K., et al. 2013. Chem. Geol. 356, 193–208.</p><p>Gautheron, C., et al. 2005. Chem. Geol. 217, 97–112.</p><p>Ritter, J.R.R., 2007. In: Ritter, J.R.R., Christensen, U.R. (Eds.), Mantle Plumes: A Multidisciplinary Approach. Springer-Verlag, Berlin Heidelberg, pp. 379–404.</p>


Author(s):  
Yinbiao Peng ◽  
Shengyao Yu ◽  
Jianxin Zhang ◽  
Yunshuai Li ◽  
Sanzhong Li ◽  
...  

Continental arcs in active continental margins (especially deep-seated arc magmatism, anatexis, and metamorphism) can be extremely significant in evaluating continent building processes. In this contribution, a Paleozoic continental arc section is constructed based on coeval granulite-facies metamorphism, anatexis, and magmatism on the northern margin of the Qilian Block, which record two significant episodes of continental crust growth. The deeper layer of the lower crust mainly consists of medium-high pressure mafic and felsic granulites, with apparent peak pressure-temperature conditions of 11−13 kbar and 800−950 °C, corresponding to crustal depths of ∼35−45 km. The high-pressure mafic granulite and local garnet-cumulate represent mafic residues via dehydration melting involving breakdown of amphibole with anatectic garnet growth. Zircon U-Pb geochronology indicates that these high-grade metamorphic rocks experienced peak granulite-facies metamorphism at ca. 450 Ma. In the upper layer of the lower crust, the most abundant rocks are preexisting garnet-bearing metasedimentary rocks, orthogneiss, and local garnet amphibolite, which experienced medium-pressure amphibolite-facies to granulite-facies metamorphism at depths of 20−30 km at ca. 450 Ma. These metasedimentary rocks and orthogneiss have also experienced partial melting involving mica and rare amphibole at 457−453 Ma. The shallow to mid-crust is primarily composed of diorite-granodiorite batholiths and volcanic cover with multiple origin, which were intruded during 500−450 Ma, recording long-term crustal growth and differentiation episode. As a whole, two episodes of continental crust growth were depicted in the continental arc section on the northern margin of the Qilian Block, including: (a) the first episode is documented in a lithological assemblage composing of coeval mafic-intermediate intrusive and volcanic rocks derived from partial melting of modified lithospheric mantle and subducted oceanic crust during southward subduction of the North Qilian Ocean at 500−480 Ma; (b) the second episode is recorded in mafic rocks derived from partial melting of modified lithospheric mantle during transition from oceanic subduction to initial collision at 460−450 Ma.


2020 ◽  
Vol 13 (8) ◽  
pp. 584-589
Author(s):  
Emily Hopper ◽  
James B. Gaherty ◽  
Donna J. Shillington ◽  
Natalie J. Accardo ◽  
Andrew A. Nyblade ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document