scholarly journals Partial melting of a depleted peridotite metasomatized by a MORB-derived hydrous silicate melt – Implications for subduction zone magmatism

2020 ◽  
Vol 290 ◽  
pp. 137-161 ◽  
Author(s):  
Michael Lara ◽  
Rajdeep Dasgupta
2012 ◽  
Vol 109 (46) ◽  
pp. 18695-18700 ◽  
Author(s):  
T. Kawamoto ◽  
M. Kanzaki ◽  
K. Mibe ◽  
K. N. Matsukage ◽  
S. Ono

2011 ◽  
Vol 108 (20) ◽  
pp. 8177-8182 ◽  
Author(s):  
K. Mibe ◽  
T. Kawamoto ◽  
K. N. Matsukage ◽  
Y. Fei ◽  
S. Ono

2004 ◽  
Vol 175 (5) ◽  
pp. 443-460 ◽  
Author(s):  
Rodolfo A. Tamayo* ◽  
René C. Maury* ◽  
Graciano P. Yumul ◽  
Mireille Polvé ◽  
Joseph Cotten ◽  
...  

Abstract The basement complexes of the Philippine archipelago include at least 20 ophiolites and ophiolitic complexes. These complexes are characterised by volcanic sequences displaying geochemical compositions similar to those observed in MORB, transitional MORB-island arc tholeiites and arc volcanic rocks originating from modern Pacific-type oceans, back-arc basins and island arcs. Ocean island basalt-like rocks are rarely encountered in the volcanic sequences. The gabbros from the ophiolites contain clinopyroxenes and plagioclases showing a wide range of XMg and An values, respectively. Some of these gabbros exhibit mineral chemistries suggesting their derivation from basaltic liquids formed from mantle sources that underwent either high degrees of partial melting or several partial melting episodes. Moreover, some of the gabbros display a crystallization sequence where orthopyroxene and clinopyroxene appeared before plagioclase. The major element compositions of coexisting orthopyroxenes and olivines from the mantle peridotites are consistent with low to high degrees of partial melting. Accessory spinels in these peridotites display a wide range of XCr values as well with some of them above the empirical upper limit of 0.6 often observed in most modern mid-oceanic ridge (MOR) mantle rocks. Co-existing olivines and spinels from the peridotites also exhibit compositions suggesting that they lastly equilibrated under oxidizing mantle conditions. The juxtaposition of volcanic rocks showing affinities with modern MOR and island arc environments suggests that most of the volcanic sequences in Philippine ophiolites formed in subduction-related geodynamic settings. Similarly, their associated gabbros and peridotites display mineralogical characteristics and mineral chemistries consistent with their derivation from modern supra-subduction zone-like environments. Alternatively, these rocks could have, in part, evolved in a supra-subduction zone even though they originated from a MOR-like setting. A simplified scenario regarding the early geodynamic evolution of the Philippines is proposed on the basis of the geochemical signatures of the ophiolites, their ages of formation and the ages and origins of the oceanic basins actually bounding the archipelago, including basins presumed to be now totally consumed. This scenario envisages the early development of the archipelago to be largely dominated by the opening and closing of oceanic basins. Fragments of these basins provided the substratum on top of which the Cretaceous to Recent volcanic arcs of the Philippines were emplaced.


1991 ◽  
Vol 55 (378) ◽  
pp. 95-112 ◽  
Author(s):  
F. E. Lloyd ◽  
A. D. Edgar ◽  
D. M. Forsyth ◽  
R. L. Barnett

AbstractGroup I xenoliths, orthopyroxene-rich and orthopyroxene-free, contain Cr-spinel and clinopyroxene ± phlogopite, and occur together with Group II clinopyroxenites ± Ti-spinel ± phlogopite in K-mafic pyroclastics southeast of Gees. The petrography and clinopyroxene chemistry of orthopyroxene-rich (opx-rich sub-group) Group I xenoliths is consistent with an ‘original’ harzburgitic mantle that has been transformed to lherzolite by the addition of endiopside. In harzburgites, orthopyroxenes are reacting to diopside + olivine + alkali-silicate melt, and, by inference, the orthopyroxene-free (opx-free subgroup) Group I, dunite-wehrlite series can be linked to the opx-rich sub-group via this reaction. Progressive enrichment of dunitic material in endiopside-diopside has resulted in the formation of wehrlite. Phlogopite is titaniferous and occurs as a trace mineral in opx-rich, Group I xenoliths, whereas substantial phlogopite vein-networks are confined to the opx-free sub-group (dunite-wehrlite series). Interstitial, alkali-felsic glass occurs are veins within, and as extensions of, the phlogopite networks. Clinopyroxenes in phlogopite-veined xenoliths are decreased in Mg/(Mg + FeTotal) (mg) and Cr and increased in Ti, Al and Ca, compared with clinopyroxenes in xenoliths which have trace phlogopite. It is proposed that harzburgitic and dunitic mantle has been infiltrated by a Ca- and alkalirich, hydrous silicate melt rather than an ephemeral carbonatite melt. Dunite has been transformed to phlogopite wehrlite by the invasion of a Ca-, Al-, Ti- and K-rich, hydrous silicate melt. Ca-activity was high initially in the melt and was reduced by clinopyroxene precipitation. This resulted in enhanced K-activity which led to phlogopite veining of clinopyroxene-rich mantle. Group II phlogopite clinopyroxenites contain Ti-spinel and salites that are distinct in their Ti, Al and Cr contents from endiopsides and diopsides in Group I xenoliths. It is unlikely that these Group II xenoliths represent the culmination of the infiltration processes that have transformed dunite to wehrlite, nor can they be related to the host melt. These xenoliths may have crystallised from Ca- and K-bearing, hydrous silicate melts in mantle channelways buffered by previously precipitated clinopyroxene and phlogopite. Gees lherzolites contain pyroxenes and spinel with distinctly lower Al contents than these same minerals in lherzolites described previously from other West Eifel localities, which may reflect a distinctive lithology and/or processes of modification for the Gees mantle.


2017 ◽  
Vol 472 ◽  
pp. 216-228 ◽  
Author(s):  
Stephen J. Turner ◽  
Charles H. Langmuir ◽  
Michael A. Dungan ◽  
Stephane Escrig

1999 ◽  
Vol 36 (10) ◽  
pp. 1697-1709 ◽  
Author(s):  
Robert A Creaser ◽  
Jo-Anne S Goodwin-Bell ◽  
Philippe Erdmer

On the basis of trace-element data, basaltic protoliths for Paleozoic eclogites from the Yukon-Tanana terrane (YTT) have diverse origins. Eclogites from Stewart Lake and the Simpson Range have characteristics of basaltic protoliths generated by subduction-zone magmatism, are hosted by serpentinitic-gabbroic rocks, and record Mississippian high-pressure metamorphism and cooling. In contrast, eclogites from Faro, Ross River, and Last Peak show either within-plate geochemistry or mid-ocean ridge protolith geochemistry with a small subduction component, are hosted by continental metasedimentary rocks of the Nisutlin assemblage, and record Permian high-pressure metamorphism and cooling. We interpret these results to derive from the following tectonic events in the Paleozoic history of the YTT: (1) activity at a Devonian-Mississippian convergent plate margin at the distal edge of North America, with near-contemporaneous subduction-zone magmatism and high-pressure metamorphism; (2) Mississippian rifting of that margin to form the outboard YTT, the Slide Mountain marginal basin, and the Faro, Ross River, and Last Peak eclogite protoliths; and (3) west-dipping subduction of the Slide Mountain Ocean under the outboard YTT in Permian time, to produce the Faro, Ross River, and Last Peak eclogites and Permian arc magmatism throughout the YTT. The basaltic protoliths of the Paleozoic YTT eclogites bear close similarity to those produced in rifted convergent margins, such as the Miocene Japanese arc - back-arc system.


2014 ◽  
Vol 410 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Georg F. Zellmer ◽  
Marie Edmonds ◽  
Susanne M. Straub

2014 ◽  
Vol 56 (11) ◽  
pp. 1395-1412 ◽  
Author(s):  
Hadi Shafaii Moghadam ◽  
Mohamed Zaki Khedr ◽  
Massimo Chiaradia ◽  
Robert J. Stern ◽  
Farzaneh Bakhshizad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document