scholarly journals Noncoding RNAs in human intervertebral disc degeneration: An integrated microarray study

Genomics Data ◽  
2015 ◽  
Vol 5 ◽  
pp. 80-81 ◽  
Author(s):  
Xu Liu ◽  
Lu Che ◽  
Yan-Ke Xie ◽  
Qing-Jie Hu ◽  
Chi-Jiao Ma ◽  
...  
2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Hao-Yu Guo ◽  
Ming-Ke Guo ◽  
Zhong-Yuan Wan ◽  
Fang Song ◽  
Hai-Qiang Wang

AbstractIntervertebral disc degeneration (IDD) is the most common cause of low-back pain. Accumulating evidence indicates that the expression profiling of noncoding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long noncoding RNAs (lncRNAs), are different between intervertebral disc tissues obtained from healthy individuals and patients with IDD. However, the roles of ncRNAs in IDD are still unclear until now. In this review, we summarize the studies concerning ncRNA interactions and regulatory functions in IDD. Apoptosis, aberrant proliferation, extracellular matrix degradation, and inflammatory abnormality are tetrad fundamental pathologic phenotypes in IDD. We demonstrated that ncRNAs are playing vital roles in apoptosis, proliferation, ECM degeneration, and inflammation process of IDD. The ncRNAs participate in underlying mechanisms of IDD in different ways. MiRNAs downregulate target genes’ expression by directly binding to the 3′-untranslated region of mRNAs. CircRNAs and lncRNAs act as sponges or competing endogenous RNAs by competitively binding to miRNAs and regulating the expression of mRNAs. The lncRNAs, circRNAs, miRNAs, and mRNAs widely crosstalk and form complex regulatory networks in the degenerative processes. The current review presents novel insights into the pathogenesis of IDD and potentially sheds light on the therapeutics in the future.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Zhao ◽  
Minjuan Lu ◽  
Dong Wang ◽  
Haopeng Li ◽  
Xijing He

Long noncoding RNAs (lncRNAs) are emerging as crucial players in a myriad of biological processes. However, the precise mechanism and functions of most lncRNAs are poorly characterized. In this study, we presented genome-wide identification of lncRNAs in the patients with intervertebral disc degeneration (IDD) and spinal cord injury (control) using RNA sequencing (RNA-seq). A total of 124.6 million raw reads were yielded using Hiseq 2500 platform and approximately 88% clean reads could be aligned to human reference genome in both IDD and control groups. RNA-seq profiling indicated that 1,854 lncRNAs were differentially expressed (log2 fold change ≥ 1 or ≤-1, p<0.05), in which 1,530 could potentially target 6,386 genes via cis-regulatory effects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for these target genes suggested that lncRNAs were involved in diverse pathways, such as lysosome, focal adhesion, and MAPK signaling. In addition, a competing endogenous RNA (ceRNA) network was constructed for analyzing the function of lncRNAs. Further, quantitative real time PCR (qRT-PCR) was used to confirm the differentially expressed lncRNAs and ceRNA network. In conclusion, our results present the first global identification of lncRNAs in IDD and may provide candidate diagnostic biomarkers for IDD treatment.


Author(s):  
Saeeda Baig

During the recent past focus has shifted from identifying intervertebral disc degeneration as being caused by physical exposure and strain to being linked with a variety of genetic variations. The objective of this review is to provide an up to date review of the existing research data regarding the relation of intervertebral disc degeneration to structural protein genes and their polymorphisms and thus help clearly establish further avenues where research into causation and treatment is needed. A comprehensive search using the keywords “Collagen”, “COL”, “Aggrecan”, “AGC”, “IVDD”, “intervertebral disc degeneration”, and “lumbar disc degeneration” from PubMed and Google Scholar, where literature in the English language was selected spanning from 1991 to 2019. There are many genes involved in the production of structural components of an intervertebral disc. The issues in production of these components involve the over-expression or under-expression of their genes, and single nucleotide polymorphisms and variable number of tandem repeats affecting their structures. These structural genes include primarily the collagen and the aggrecan genes. While genetic and environmental factors all come into play with a disease process like disc degeneration, the bulk of research now shows the significantly larger impact of hereditary over exposure. While further research is needed into some of the lesser studied genes linked to IVDD and also the racial variations in genetic makeup, the focus in the near future should be on establishment of genetic testing to identify individuals at greater risk of disease and deliberation regarding the use of gene therapy to prevent disc degeneration.


2019 ◽  
Author(s):  
Takashi Ohnishi ◽  
Katsuhisa Yamada ◽  
Koji Iwasaki ◽  
Takeru Tsujimoto ◽  
Hideaki Higashi ◽  
...  

2020 ◽  
Author(s):  
Jialiang Lin ◽  
Xuanqi Zheng ◽  
Zengjie Zhang ◽  
Zhenxuan Shao ◽  
Chongan Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document