Epithelial dynamics during early mouse development

2022 ◽  
Vol 72 ◽  
pp. 110-117
Author(s):  
Shifaan Thowfeequ ◽  
Matthew J Stower ◽  
Shankar Srinivas
2009 ◽  
Vol 126 ◽  
pp. S101-S102
Author(s):  
Stefan Rudloff ◽  
Rolf Kemler

2010 ◽  
Vol 42 (12) ◽  
pp. 1093-1100 ◽  
Author(s):  
Julie Borgel ◽  
Sylvain Guibert ◽  
Yufeng Li ◽  
Hatsune Chiba ◽  
Dirk Schübeler ◽  
...  

Development ◽  
2016 ◽  
Vol 143 (16) ◽  
pp. 2958-2964 ◽  
Author(s):  
Shin Kobayashi ◽  
Yusuke Hosoi ◽  
Hirosuke Shiura ◽  
Kazuo Yamagata ◽  
Saori Takahashi ◽  
...  

Development ◽  
2002 ◽  
Vol 129 (14) ◽  
pp. 3455-3468 ◽  
Author(s):  
Dominic P. Norris ◽  
Jane Brennan ◽  
Elizabeth K. Bikoff ◽  
Elizabeth J. Robertson

The TGFβ-related growth factor Nodal governs anteroposterior (AP) and left-right (LR) axis formation in the vertebrate embryo. A conserved intronic enhancer (ASE), containing binding sites for the fork head transcription factor Foxh1, modulates dynamic patterns of Nodal expression during early mouse development. This enhancer is responsible for early activation of Nodal expression in the epiblast and visceral endoderm, and at later stages governs asymmetric expression during LR axis formation. We demonstrate ASE activity is strictly Foxh1 dependent. Loss of this autoregulatory enhancer eliminates transcription in the visceral endoderm and decreases Nodal expression in the epiblast, but causes surprisingly discrete developmental abnormalities. Thus lowering the level of Nodal signaling in the epiblast disrupts both orientation of the AP axis and specification of the definitive endoderm. Targeted removal of the ASE also dramatically reduces left-sided Nodal expression, but the early events controlling LR axis specification are correctly initiated. However loss of the ASE disrupts Lefty2 (Leftb) expression and causes delayed Pitx2 expression leading to late onset, relatively minor LR patterning defects. The feedback loop is thus essential for maintenance of Nodal signals that selectively regulate target gene expression in a temporally and spatially controlled fashion in the mouse embryo.


Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 37-51
Author(s):  
S. J. Kelly ◽  
J. G. Mulnard ◽  
C. F. Graham

Cell division was observed in intact and dissociated mouse embryos between the 2-cell stage and the blastocyst in embryos developing in culture. Division to the 4-cell stage was usually asynchronous. The first cell to divide to the 4-cell stage produced descendants which tended to divide ahead of those cells produced by its slow partner at all subsequent stages of development up to the blastocyte stage. The descendants of the first cell to divide to the 4-cell stage did not subsequently have short cell cycles. The first cell or last cell to divide from the 4-cell stage was labelled with tritiated thymidine. The embryo was reassembled, and it was found that the first pair of cells to reach the 8-cell stage contributed disproportionately more descendants to the ICM when compared with the last cell to divide to the 8-cell stage.


Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 189-201 ◽  
Author(s):  
N. Takagi ◽  
K. Abe

Matings between female mice carrying Searle's translocation, T(X;16)16H, and normal males give rise to chromosomally unbalanced zygotes with two complete sets of autosomes, one normal X chromosome and one X16 translocation chromosome (XnX16 embryos). Since X chromosome inactivation does not occur in these embryos, probably due to the lack of the inactivation center on X16, XnX16 embryos are functionally disomic for the proximal 63% of the X chromosome and trisomic for the distal segment of chromosome 16. Developmental abnormalities found in XnX16 embryos include: (1) growth retardation detected as early as stage 9, (2) continual loss of embryonic ectoderm cells either by death or by expulsion into the proamniotic cavity, (3) underdevelopment of the ectoplacental cone throughout the course of development, (4) very limited, if any, mesoderm formation, (5) failure in early organogenesis including the embryo, amnion, chorion and yolk sac. Death occurred at 10 days p.c. Since the combination of XO and trisomy 16 does not severely affect early mouse development, it is likely that regulatory mechanisms essential for early embryogenesis do not function correctly in XnX16 embryos due to activity of the extra X chromosome segment of X16.


Sign in / Sign up

Export Citation Format

Share Document