scholarly journals Multi-factor Principle for Electrolyte Additive Molecule Design for Facilitating the Development of Electrolyte Chemistry

Author(s):  
Shuhui Sun
2020 ◽  
Vol 3 (3) ◽  
pp. 3049-3058 ◽  
Author(s):  
Jianhui Li ◽  
Yuqing Liao ◽  
Weizhen Fan ◽  
Zifei Li ◽  
Guanjie Li ◽  
...  

2015 ◽  
Vol 294 ◽  
pp. 248-253 ◽  
Author(s):  
Agnese Birrozzi ◽  
Fabio Maroni ◽  
Rinaldo Raccichini ◽  
Roberto Tossici ◽  
Roberto Marassi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3150
Author(s):  
Ignas Nevinskas ◽  
Zenius Mockus ◽  
Remigijus Juškėnas ◽  
Ričardas Norkus ◽  
Algirdas Selskis ◽  
...  

Electron dynamics in the polycrystalline bismuth films were investigated by measuring emitted terahertz (THz) radiation pulses after their photoexcitation by tunable wavelength femtosecond duration optical pulses. Bi films were grown on metallic Au, Pt, and Ag substrates by the electrodeposition method with the Triton X-100 electrolyte additive, which allowed us to obtain more uniform films with consistent grain sizes on any substrate. It was shown that THz pulses are generated due to the spatial separation of photoexcited electrons and holes diffusing from the illuminated surface at different rates. The THz photoconductivity spectra analysis has led to a conclusion that the thermalization of more mobile carriers (electrons) is dominated by the carrier–carrier scattering rather than by their interaction with the lattice.


2021 ◽  
Vol 289 ◽  
pp. 116690
Author(s):  
Z.H. Zhang ◽  
L. Wei ◽  
M.C. Wu ◽  
B.F. Bai ◽  
T.S. Zhao

2021 ◽  
Author(s):  
Wei Zhang ◽  
Qiang Wu ◽  
Ziqi Zeng ◽  
Chuang Yu ◽  
Shijie Cheng ◽  
...  

A soluble organoselenide compound, phenyl diselenide (PDSe), is employed as a soluble electrolyte additive to enhance the kinetics of sulfurized polyacrylonitrile cathode, in which radical exchange in the solid-liquid interface...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lijiao Ma ◽  
Shaoqing Zhang ◽  
Jincheng Zhu ◽  
Jingwen Wang ◽  
Junzhen Ren ◽  
...  

AbstractNon-fullerene acceptors (NFAs) based on non-fused conjugated structures have more potential to realize low-cost organic photovoltaic (OPV) cells. However, their power conversion efficiencies (PCEs) are much lower than those of the fused-ring NFAs. Herein, a new bithiophene-based non-fused core (TT-Pi) featuring good planarity as well as large steric hindrance was designed, based on which a completely non-fused NFA, A4T-16, was developed. The single-crystal result of A4T-16 reveals that a three-dimensional interpenetrating network can be formed due to the compact π–π stacking between the adjacent end-capping groups. A high PCE of 15.2% is achieved based on PBDB-TF:A4T-16, which is the highest value for the cells based on the non-fused NFAs. Notably, the device retains ~84% of its initial PCE after 1300 h under the simulated AM 1.5 G illumination (100 mW cm−2). Overall, this work provides insight into molecule design of the non-fused NFAs from the aspect of molecular geometry control.


Author(s):  
Lin-Bo Huang ◽  
Ge Li ◽  
Zhuo-Ya Lu ◽  
Jin-Yi Li ◽  
Lu Zhao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document