A survey of expressed tRNA genes in the chromosome I of Arabidopsis using an RNA polymerase III-dependent in vitro transcription system

Gene ◽  
2007 ◽  
Vol 392 (1-2) ◽  
pp. 7-13 ◽  
Author(s):  
Yasushi Yukawa ◽  
Takaharu Mizutani ◽  
Kazuhito Akama ◽  
Masahiro Sugiura
Transcription ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. e27526 ◽  
Author(s):  
Hélène Dumay-Odelot ◽  
Stéphanie Durrieu-Gaillard ◽  
Leyla El Ayoubi ◽  
Camila Parrot ◽  
Martin Teichmann

1986 ◽  
Vol 6 (9) ◽  
pp. 3278-3282
Author(s):  
D P Carlson ◽  
J Ross

A base substitution in the 5'-flanking region of a human fetal globin gene is associated with abnormal fetal hemoglobin production. It also reduces by 5- to 10-fold in vitro transcription of the gene by RNA polymerase III. We discuss potential links between polymerase III transcription and abnormal hemoglobin production.


1995 ◽  
Vol 15 (3) ◽  
pp. 1467-1478 ◽  
Author(s):  
S A Shaaban ◽  
B M Krupp ◽  
B D Hall

In order to identify catalytically important amino acid changes within the second-largest subunit of yeast RNA polymerase III, we mutagenized selected regions of its gene (RET1) and devised in vivo assays for both increased and decreased transcription termination by this enzyme. Using as the reporter gene a mutant SUP4-o tRNA gene that in one case terminates prematurely and in the other case fails to terminate, we screened mutagenized RET1 libraries for reduced and increased transcription termination, respectively. The gain in suppression phenotype was in both cases scored as a reduction in the accumulation of red pigment in yeast strains harboring the ade2-1 ochre mutation. Termination-altering mutations were obtained in regions of the RET1 gene encoding amino acids 300 to 325, 455 to 486, 487 to 521, and 1061 to 1082 of the protein. In degree of amino acid sequence conservation, these range from highly variable in the first to highly conserved in the last two regions. Residues 300 to 325 yielded mainly reduced-termination mutants, while in region 1061 to 1082, increased-termination mutants were obtained exclusively. All mutants recovered, while causing gain of suppression with one SUP4 allele, brought about a reduction in suppression with the other allele, thus confirming that the phenotype is due to altered termination rather than an elevated level of transcription initiation. In vitro transcription reactions performed with extracts from several strong mutants demonstrated that the mutant polymerases respond to RNA terminator sequences in a manner that matches their in vivo termination phenotypes.


1986 ◽  
Vol 6 (9) ◽  
pp. 3278-3282 ◽  
Author(s):  
D P Carlson ◽  
J Ross

A base substitution in the 5'-flanking region of a human fetal globin gene is associated with abnormal fetal hemoglobin production. It also reduces by 5- to 10-fold in vitro transcription of the gene by RNA polymerase III. We discuss potential links between polymerase III transcription and abnormal hemoglobin production.


1986 ◽  
Vol 6 (9) ◽  
pp. 3068-3076
Author(s):  
M F Carey ◽  
K Singh ◽  
M Botchan ◽  
N R Cozzarelli

RNA polymerase III (pol III) transcripts of the highly repeated mouse B2 gene family are increased in many oncogenically transformed murine cell lines. In cells transformed by simian virus 40, the small, cytoplasmic B2 RNAs are present at 20-fold-higher levels than in normal cells (M. R. D. Scott, K. Westphal, and P. W. J. Rigby, Cell 34:557-567, 1983; K. Singh, M. Carey, S. Saragosti, and M. Botchan, Nature [London] 314:553-556). We found that transcripts of the highly repeated B1 gene family are also increased 20-fold upon simian virus 40 transformation and showed that these RNAs result from pol III transcription. In contrast, transcripts from less highly repeated pol III templates such as the 5S, 7SL, 7SK, 4.5SI, tRNAMet, and tRNAPro genes are unaffected. The expression of the B2 RNAs in isolated nuclei shows that the augmentation is due mainly to an increased rate of transcription by pol III. There is thus specific transformation-inducible pol III transcription. We developed an in vitro transcription assay which utilizes genomic DNA as a template to study the transcription of all members of a repetitive gene family in their native context. This assay reproduces the low cytoplasmic levels of B1 compared with B2 RNAs suggesting that this ratio is dictated by intrinsic signals in the DNA.


1985 ◽  
Vol 5 (1) ◽  
pp. 40-45 ◽  
Author(s):  
A B Lassar ◽  
D H Hamer ◽  
R G Roeder

We have constructed recombinant simian virus 40 molecules containing Xenopus 5S RNA and tRNA genes. Recombinant minichromosomes containing these genes were isolated to study the interaction of RNA polymerase III transcription factors with these model chromatin templates. Minichromosomes containing a tRNAMet gene can be isolated in a stable complex with transcription factors (IIIB and IIIC) and are active in vitro templates for purified RNA polymerase III. In contrast, minichromosomes containing a 5S RNA gene are refractory to transcription by purified RNA polymerase III in either the absence or the presence of other factors.


Sign in / Sign up

Export Citation Format

Share Document