scholarly journals TFIIA is required for in vitro transcription of mammalian U6 genes by RNA polymerase III.

1992 ◽  
Vol 267 (23) ◽  
pp. 16359-16364
Author(s):  
R Waldschmidt ◽  
K.H. Seifart
Transcription ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. e27526 ◽  
Author(s):  
Hélène Dumay-Odelot ◽  
Stéphanie Durrieu-Gaillard ◽  
Leyla El Ayoubi ◽  
Camila Parrot ◽  
Martin Teichmann

1986 ◽  
Vol 6 (9) ◽  
pp. 3278-3282
Author(s):  
D P Carlson ◽  
J Ross

A base substitution in the 5'-flanking region of a human fetal globin gene is associated with abnormal fetal hemoglobin production. It also reduces by 5- to 10-fold in vitro transcription of the gene by RNA polymerase III. We discuss potential links between polymerase III transcription and abnormal hemoglobin production.


1995 ◽  
Vol 15 (3) ◽  
pp. 1467-1478 ◽  
Author(s):  
S A Shaaban ◽  
B M Krupp ◽  
B D Hall

In order to identify catalytically important amino acid changes within the second-largest subunit of yeast RNA polymerase III, we mutagenized selected regions of its gene (RET1) and devised in vivo assays for both increased and decreased transcription termination by this enzyme. Using as the reporter gene a mutant SUP4-o tRNA gene that in one case terminates prematurely and in the other case fails to terminate, we screened mutagenized RET1 libraries for reduced and increased transcription termination, respectively. The gain in suppression phenotype was in both cases scored as a reduction in the accumulation of red pigment in yeast strains harboring the ade2-1 ochre mutation. Termination-altering mutations were obtained in regions of the RET1 gene encoding amino acids 300 to 325, 455 to 486, 487 to 521, and 1061 to 1082 of the protein. In degree of amino acid sequence conservation, these range from highly variable in the first to highly conserved in the last two regions. Residues 300 to 325 yielded mainly reduced-termination mutants, while in region 1061 to 1082, increased-termination mutants were obtained exclusively. All mutants recovered, while causing gain of suppression with one SUP4 allele, brought about a reduction in suppression with the other allele, thus confirming that the phenotype is due to altered termination rather than an elevated level of transcription initiation. In vitro transcription reactions performed with extracts from several strong mutants demonstrated that the mutant polymerases respond to RNA terminator sequences in a manner that matches their in vivo termination phenotypes.


1986 ◽  
Vol 6 (9) ◽  
pp. 3278-3282 ◽  
Author(s):  
D P Carlson ◽  
J Ross

A base substitution in the 5'-flanking region of a human fetal globin gene is associated with abnormal fetal hemoglobin production. It also reduces by 5- to 10-fold in vitro transcription of the gene by RNA polymerase III. We discuss potential links between polymerase III transcription and abnormal hemoglobin production.


1986 ◽  
Vol 6 (9) ◽  
pp. 3068-3076
Author(s):  
M F Carey ◽  
K Singh ◽  
M Botchan ◽  
N R Cozzarelli

RNA polymerase III (pol III) transcripts of the highly repeated mouse B2 gene family are increased in many oncogenically transformed murine cell lines. In cells transformed by simian virus 40, the small, cytoplasmic B2 RNAs are present at 20-fold-higher levels than in normal cells (M. R. D. Scott, K. Westphal, and P. W. J. Rigby, Cell 34:557-567, 1983; K. Singh, M. Carey, S. Saragosti, and M. Botchan, Nature [London] 314:553-556). We found that transcripts of the highly repeated B1 gene family are also increased 20-fold upon simian virus 40 transformation and showed that these RNAs result from pol III transcription. In contrast, transcripts from less highly repeated pol III templates such as the 5S, 7SL, 7SK, 4.5SI, tRNAMet, and tRNAPro genes are unaffected. The expression of the B2 RNAs in isolated nuclei shows that the augmentation is due mainly to an increased rate of transcription by pol III. There is thus specific transformation-inducible pol III transcription. We developed an in vitro transcription assay which utilizes genomic DNA as a template to study the transcription of all members of a repetitive gene family in their native context. This assay reproduces the low cytoplasmic levels of B1 compared with B2 RNAs suggesting that this ratio is dictated by intrinsic signals in the DNA.


2021 ◽  
Author(s):  
Juanjuan Xie ◽  
Umberto Aiello ◽  
Yves Clement ◽  
Nouhou Haidara ◽  
Mathias Girbig ◽  
...  

RNA polymerase III (RNAPIII) synthesizes essential and abundant non-coding RNAs such as tRNAs. Controlling RNAPIII span of activity by accurate and efficient termination is a challenging necessity to ensure robust gene expression and to prevent conflicts with other DNA-associated machineries. The mechanism of RNAPIII termination is believed to be simpler than that of other eukaryotic RNA polymerases, solely relying on the recognition of a T-tract in the non-template strand. Here we combine high-resolution genome-wide analyses and in vitro transcription termination assays to revisit the mechanism of RNAPIII transcription termination in budding yeast. We show that T-tracts are necessary but not always sufficient for termination and that secondary structures of the nascent RNAs are important auxiliary cis-acting elements. Moreover, we show that the helicase Sen1 plays a key role in a fail-safe termination pathway. Our results provide a comprehensive model illustrating how multiple mechanisms cooperate to ensure efficient RNAPIII transcription termination.


Sign in / Sign up

Export Citation Format

Share Document