Sequence variation in the Mc1r gene for a group of polymorphic snakes

Gene ◽  
2013 ◽  
Vol 513 (2) ◽  
pp. 282-286 ◽  
Author(s):  
Christian L. Cox ◽  
Alison R. Davis Rabosky ◽  
Paul T. Chippindale
Keyword(s):  
2014 ◽  
Vol 51 (3) ◽  
pp. 270-274 ◽  
Author(s):  
Jing Huang ◽  
Bing Zhou ◽  
Da-Qian He ◽  
Shi-Yi Chen ◽  
Qing Zhu ◽  
...  

Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1253-1268 ◽  
Author(s):  
Kateryna D Makova ◽  
Michele Ramsay ◽  
Trefor Jenkins ◽  
Wen-Hsiung Li

AbstractAn ∼6.6-kb region located upstream from the melanocortin 1 receptor (MC1R) gene and containing its promoter was sequenced in 54 humans (18 Africans, 18 Asians, and 18 Europeans) and in one chimpanzee, gorilla, and orangutan. Seventy-six polymorphic sites were found among the human sequences and the average nucleotide diversity (π) was 0.141%, one of the highest among all studies of nuclear sequence variation in humans. Opposite to the pattern observed in the MC1R coding region, in the present region π is highest in Africans (0.136%) compared to Asians (0.116%) and Europeans (0.122%). The distributions of π, θ, and Fu and Li's F-statistic are nonuniform along the sequence and among continents. The pattern of genetic variation is consistent with a population expansion in Africans. We also suggest a possible phase of population size reduction in non-Africans and purifying selection acting in the middle subregion and parts of the 5′ subregion in Africans. We hypothesize diversifying selection acting on some sites in the 5′ and 3′ subregions or in the MC1R coding region in Asians and Europeans, though we cannot reject the possibility of relaxation of functional constraints in the MC1R gene in Asians and Europeans. The mutation rate in the sequenced region is 1.65 × 10—9 per site per year. The age of the most recent common ancestor for this region is similar to that for the other long noncoding regions studied to date, providing evidence for ancient gene genealogies. Our population screening and phylogenetic footprinting suggest potentially important sites for the MC1R promoter function.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e46150 ◽  
Author(s):  
Clea Scala ◽  
Xiangjun Tian ◽  
Natasha J. Mehdiabadi ◽  
Margaret H. Smith ◽  
Gerda Saxer ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1609-1623 ◽  
Author(s):  
Christopher Toomajian ◽  
Martin Kreitman

AbstractThe HFE locus encodes an HLA class-I-type protein important in iron regulation and segregates replacement mutations that give rise to the most common form of genetic hemochromatosis. The high frequency of one disease-associated mutation, C282Y, and the nature of this disease have led some to suggest a selective advantage for this mutation. To investigate the context in which this mutation arose and gain a better understanding of HFE genetic variation, we surveyed nucleotide variability in 11.2 kb encompassing the HFE locus and experimentally determined haplotypes. We fully resequenced 60 chromosomes of African, Asian, or European ancestry as well as one chimpanzee, revealing 41 variable sites and a nucleotide diversity of 0.08%. This indicates that linkage to the HLA region has not substantially increased the level of HFE variation. Although several haplotypes are shared between populations, one haplotype predominates in Asia but is nearly absent elsewhere, causing higher than average genetic differentiation among the three major populations. Our samples show evidence of intragenic recombination, so the scarcity of recombination events within the C282Y allele class is consistent with selection increasing the frequency of a young allele. Otherwise, the pattern of variability in this region does not clearly indicate the action of positive selection at this or linked loci.


Ecotoxicology ◽  
2021 ◽  
Author(s):  
Daesik Park ◽  
Catherine R. Propper ◽  
Guangning Wang ◽  
Matthew C. Salanga

AbstractNaturally occurring arsenic is toxic at extremely low concentrations, yet some species persist even in high arsenic environments. We wanted to test if these species show evidence of evolution associated with arsenic exposure. To do this, we compared allelic variation across 872 coding nucleotides of arsenic (+3) methyltransferase (as3mt) and whole fish as3mt gene expression from three field populations of Gambusia affinis, from water sources containing low (1.9 ppb), medium-low (3.3 ppb), and high (15.7 ppb) levels of arsenic. The high arsenic site exceeds the US EPA’s Maximum Contamination Level for drinking water. Medium-low and high populations exhibited homozygosity, and no sequence variation across all animals sampled. Eleven of 24 fish examined (45.8%) in the low arsenic population harbored synonymous single nucleotide polymorphisms (SNPs) in exons 4 and/or 10. SNP presence in the low arsenic population was not associated with differences in as3mt transcript levels compared to fish from the medium-low site, where SNPs were noted; however, as3mt expression in fish from the high arsenic concentration site was significantly lower than the other two sites. Low sequence variation in fish populations from sites with medium-low and high arsenic concentrations suggests greater selective pressure on this allele, while higher variation in the low population suggests a relaxed selection. Our results suggest gene regulation associated with arsenic detoxification may play a more crucial role in influencing responses to arsenic than polymorphic gene sequence. Understanding microevolutionary processes to various contaminants require the evaluation of multiple populations across a wide range of pollution exposures.


Sign in / Sign up

Export Citation Format

Share Document