Spatial variability of soil electrical conductivity in a small watershed on the Loess Plateau of China

Geoderma ◽  
2014 ◽  
Vol 230-231 ◽  
pp. 212-220 ◽  
Author(s):  
Wei Hu ◽  
Ming An Shao ◽  
Li Wan ◽  
Bing Cheng Si
2020 ◽  
Vol 35 (3) ◽  
pp. 743
Author(s):  
YANG Jing-han ◽  
LIU Meng-yun ◽  
ZHANG Jie ◽  
ZHANG Meng-meng ◽  
CAO Run-shan ◽  
...  

Soil Science ◽  
2006 ◽  
Vol 171 (8) ◽  
pp. 627-637 ◽  
Author(s):  
Jay David Jabro ◽  
Robert G. Evans ◽  
Yunseup Kim ◽  
William B. Stevens ◽  
William M. Iversen

2019 ◽  
Vol 1 (4) ◽  
pp. 567-585 ◽  
Author(s):  
João Serrano ◽  
Shakib Shahidian ◽  
José Marques da Silva ◽  
Luís Paixão ◽  
José Calado ◽  
...  

Dryland pastures in the Alentejo region, located in the south of Portugal, normally occupy soils that have low fertility but, simultaneously, important spatial variability. Rational application of fertilizers requires knowledge of spatial variability of soil characteristics and crop response, which reinforces the interest of technologies that facilitates the identification of homogeneous management zones (HMZ). In this work, a pasture field of about 25 ha, integrated in the Montado mixed ecosystem (agro-silvo-pastoral), was monitored. Surveys of apparent soil electrical conductivity (ECa) were carried out in November 2017 and October 2018 with a Veris 2000 XA contact sensor. A total of 24 sampling points (30 × 30 m) were established in tree-free zones to allow readings of normalized difference vegetation index (NDVI) and normalized difference water index (NDWI). Historical time series of these indices were obtained from satellite imagery (Sentinel-2) in winter and spring 2017 and 2018. Three zones with different potential productivity were defined based on the results obtained in terms of spatial variability and temporal stability of the measured parameters. These are the basis for the elaboration of differentiated prescription maps of fertilizers with variable application rate technology, taking into account the variability of soil characteristics and pasture development, contributing to the sustainability of this ecosystem.


2008 ◽  
Vol 65 (3) ◽  
pp. 268-276 ◽  
Author(s):  
Wei Hu ◽  
Ming An Shao ◽  
Quan Jiu Wang ◽  
Jun Fan ◽  
Klaus Reichardt

The understanding of the structure of the spatial variability of soil surface hydraulic properties on steep slopes is important for modeling infiltration and runoff processes. The objective of this study was to investigate the spatial variability of these properties on a steep slope of the Loess Plateau in northwest China. A 9600 m² area was systematically sampled in a grid of 106 points spaced 10 m x 10 m. Hydraulic properties were determined with a disc infiltrometer under multiple pressure heads (-15, -9, -6, -3, 0 cm) at each sample point. Classical and geo-statistical methods were used for data analysis. The results indicated that the variation of Gardner's a and hydraulic conductivities at all applied pressure heads was moderate and the heterogeneity for hydraulic conductivities increased as the applied pressure head increased. Along the slope, hydraulic conductivities generally decreased downwards, while the Gardner's a fluctuated slightly. The Gardner's a of the shaded aspect of the slope was greater than that of the sunny aspect. The hydraulic conductivities of the shaded aspect were greater at higher pressure heads as compared to the sunny aspect, but lower than those of the sunny aspect at lower pressure heads. Correlation analysis showed a negative correlation between hydraulic conductivity and soil organic matter and clay (<0.01 mm) contents. Hydraulic conductivities at pressure heads of -3, -6, -9, -15 cm varied across the slope and their spatial dependence increased as the pressure head declined. The heterogeneity and spatial dependence of hydraulic properties were larger for the areas with shaded aspect as compared to the sunny aspect, however, as pressure decreased they showed a progressively increasing spatial structure, and their spatial structure behaved increasingly similar in both the shaded and sunny aspects.


Sign in / Sign up

Export Citation Format

Share Document