Soil aggregate stability to predict organic carbon outputs from soils

Geoderma ◽  
2015 ◽  
Vol 243-244 ◽  
pp. 205-213 ◽  
Author(s):  
V. Chaplot ◽  
M. Cooper
2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


Author(s):  
Man Liu ◽  
Guilin Han ◽  
Qian Zhang

Soil aggregate stability can indicate soil quality, and affects soil organic carbon (SOC) and soil organic nitrogen (SON) sequestration. However, for erodible soils, the effects of soil aggregate stability on SOC and SON under land use change are not well known. In this study, soil aggregate distribution, SOC and SON content, soil aggregate stability, and soil erodibility were determined in the soils at different depths along the stages following agricultural abandonment, including cropland, abandoned cropland, and native vegetation land in an erodible region of Southwest China. Soil aggregation, soil aggregate stability, and SOC and SON content in the 0–20 cm depth soils increased after agricultural abandonment, but soil texture and soil erodibility were not affected by land use change. Soil erodibility remained in a low level when SOC contents were over 20 g·kg−1, and it significantly increased with the loss of soil organic matter (SOM). The SOC and SON contents increased with soil aggregate stability. This study suggests that rapidly recovered soil aggregate stability after agricultural abandonment promotes SOM sequestration, whereas sufficient SOM can effectively maintain soil quality in karst ecological restoration.


2012 ◽  
Vol 610-613 ◽  
pp. 3063-3066 ◽  
Author(s):  
Yong Ming Huang ◽  
Qiang Sheng Wu ◽  
Yan Li

The effects of an arbuscular mycorrhizal fungus, Glomus mosseae, on plant growth, soil aggregate stability, and rhizosphere carbon pools of young Citrus junos seedings were investigated with potted experiment in greenhouse. After three months of mycorrhizal inoculation, root colonization was 54.25%. Inoculation with G. mosseae significantly promoted plant height, stem diameter, leaf number, and shoot and root fresh weights. Colonization by G. mosseae significantly increased soil aggregate stability of the citrus rhizosphere through increase of mean weight diameter. G. mosseae could release a specific glycoprotein viz. glomalin into the rhizosphere as glomalin-related soil protein (GRSP). Meanwhile, mycorrhizal colonization was significantly positively correlated with two GRSP fractions. In stabilization of aggregate stability, in GRSP fractions only easy extractable -GRSP might contribute the role. The mycorrhizal symbiosis could increase soil organic carbon, hot-water extractable carbohydrates, and hydrolyzed carbohydrates concentrations, but the differences were not significant. Combined with the correlation analysis, it suggests that GRPS did not significantly regulate rhizospheric carbon pools, due to the short treated time (only 3 months).


2015 ◽  
Vol 7 (3) ◽  
pp. 2213-2242 ◽  
Author(s):  
F. K. Tang ◽  
M. Cui ◽  
Q. Lu ◽  
Y. G. Liu ◽  
H. Y. Guo ◽  
...  

Abstract. Changes in soil utilization significantly affect aggregate stability and aggregate-associated soil organic carbon (SOC). A field investigation and indoor analysis were conducted in order to study the soil aggregate stability and organic carbon distribution in the water-stable aggregates (WSA) of the bare land (BL), grassland (GL), shrubland (SL), and woodland (WL) in a typical karst gorge region. The results indicated that the BL, GL, SL, and WL were dominated by particles with sizes > 5 mm under dry sieving treatment, and that the soil aggregate contents of various sizes decreased as the particle size decreased. In addition, the BL, GL, SL, and WL were predominantly comprised of WSA < 0.25 mm under wet sieving treatment, and that the WSA contents initially increased, then decreased, and then increased again as the particle size decreased. Furthermore, at a soil depth of 0–60 cm, the mean weight diameter (MWD), geometrical mean diameter (GMD), and fractal dimensions (D) of the dry aggregates and water-stable aggregates in the different types of land were ranked, in descending order, as WL > GL > SL > BL. The contents of WSA > 0.25 mm, MWD and GMD increased significantly, in that order, and the percentage of aggregate destruction (PAD) and fractal dimensions decreased significantly as the soil aggregate stability improved. The results of this study indicated that, as the SOC contents increased after vegetation restoration, the average SOC content of WL was 2.35, 1.37, and 1.26 times greater than that in the BL, GL, and SL, respectively. The total SOC and SOC associated in WSA of various sizes were the highest at a soil depth of 0–20 cm. In addition, the SOC contents of the WSA increased as the soil aggregate sizes decreased. The SOC contents of the WSA < 0.25 mm were highest except in the bare land, and the SOC contents of the aggregates < 0.25 mm, which ranged from 18.85 to 41.08 %, comprised the majority of the total aggregate SOC contents. The woodland and grassland facilitated WSA stability and SOC protection, thus, promoting the natural restoration of vegetation by reducing artificial disturbances could effectively restore the ecology of and prevent soil erosion in karst regions.


Sign in / Sign up

Export Citation Format

Share Document