Arbuscular Mycorrhizal Fungi Alter Plant Growth, Soil Aggregate Stability, and Rhizospheric Organic Carbon Pools of Citrus

2012 ◽  
Vol 610-613 ◽  
pp. 3063-3066 ◽  
Author(s):  
Yong Ming Huang ◽  
Qiang Sheng Wu ◽  
Yan Li

The effects of an arbuscular mycorrhizal fungus, Glomus mosseae, on plant growth, soil aggregate stability, and rhizosphere carbon pools of young Citrus junos seedings were investigated with potted experiment in greenhouse. After three months of mycorrhizal inoculation, root colonization was 54.25%. Inoculation with G. mosseae significantly promoted plant height, stem diameter, leaf number, and shoot and root fresh weights. Colonization by G. mosseae significantly increased soil aggregate stability of the citrus rhizosphere through increase of mean weight diameter. G. mosseae could release a specific glycoprotein viz. glomalin into the rhizosphere as glomalin-related soil protein (GRSP). Meanwhile, mycorrhizal colonization was significantly positively correlated with two GRSP fractions. In stabilization of aggregate stability, in GRSP fractions only easy extractable -GRSP might contribute the role. The mycorrhizal symbiosis could increase soil organic carbon, hot-water extractable carbohydrates, and hydrolyzed carbohydrates concentrations, but the differences were not significant. Combined with the correlation analysis, it suggests that GRPS did not significantly regulate rhizospheric carbon pools, due to the short treated time (only 3 months).

2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


2019 ◽  
Vol 43 ◽  
Author(s):  
Marisângela Viana Barbosa ◽  
Daniela de Fátima Pedroso ◽  
Nilton Curi ◽  
Marco Aurélio Carbone Carneiro

ABSTRACT Soil structure, which is defined by the arrangement of the particles and the porous space forming aggregates, is one of the most important properties of the soil. Among the biological factors that influence the formation and stabilization of soil aggregates, arbuscular mycorrhizal fungi (AMF) are distinguished due to extrarradicular hyphae and glomalin production. In this context, the objective of this study was to evaluate different AMF (Acaulospora colombiana, Acaulospora longula, Acaulospora morrowiae, Paraglomus occultum and Gigaspora margarita) associated with Urochloa brizantha (A. Rich.) Stapf on soil aggregate stability. The study was conducted in a completely randomized design, using an Oxisol and autoclaved sand 2:1 (v/v), with seven treatments: five AMF; and treatments with plants without inoculation and with only the soil, with 5 replicates. The experiment was conducted during 180 days and the following variables were evaluated: mycelium total length (TML); production of easily extractable glomalin-related soil protein (GRSP) in the soil and aggregate classes; stability of the dry and immersed in water aggregates through the mean geometric diameter (MGD) and the mean weighted diameter (MWD) of aggregates; and the soil aggregate stability index (ASI). It was observed that the inoculation favored soil aggregation, with a high incidence of A. colombiana, which presented the highest MGD, TML and GRSP production in the aggregates with Ø>2.0mm and for A. colombiana and A. morrowiae in the aggregates with Ø<0.105 mm, when compared to the treatment without inoculation. These results show that there is a distinction between the effects of different AMF on the formation and stability of soil aggregates.


2021 ◽  
Vol 5 (1) ◽  
pp. 49-54
Author(s):  
Hanggari Sittadewi

Vesicular-arbuscular mychorrizae (MVA) is a key player in triggering vegetation development and soil reinforcement due to its potential to increase plant growth and soil aggregate stability. In terms of enhancing plant growth, the vesicular-arbuscular mycorrhizae provides greater and more efficient access through the fungal hyphae for nutrient absorption and delivery to the plant. From the side of soil mechanical, the potential of vesicular-arbuscular mycorrhizae is to increase the soil aggregate stability. These potentials, in their application can contribute to soil and slope stability. The characteristics and biological effects of vascular-arbuscular mycorrhizae to increase plant growth and soil aggregate stability in the correlation to slope stability will be discussed in this paper.  


Author(s):  
Man Liu ◽  
Guilin Han ◽  
Qian Zhang

Soil aggregate stability can indicate soil quality, and affects soil organic carbon (SOC) and soil organic nitrogen (SON) sequestration. However, for erodible soils, the effects of soil aggregate stability on SOC and SON under land use change are not well known. In this study, soil aggregate distribution, SOC and SON content, soil aggregate stability, and soil erodibility were determined in the soils at different depths along the stages following agricultural abandonment, including cropland, abandoned cropland, and native vegetation land in an erodible region of Southwest China. Soil aggregation, soil aggregate stability, and SOC and SON content in the 0–20 cm depth soils increased after agricultural abandonment, but soil texture and soil erodibility were not affected by land use change. Soil erodibility remained in a low level when SOC contents were over 20 g·kg−1, and it significantly increased with the loss of soil organic matter (SOM). The SOC and SON contents increased with soil aggregate stability. This study suggests that rapidly recovered soil aggregate stability after agricultural abandonment promotes SOM sequestration, whereas sufficient SOM can effectively maintain soil quality in karst ecological restoration.


Sign in / Sign up

Export Citation Format

Share Document