Microscale soil structures foster organic matter stabilization in permafrost soils

Geoderma ◽  
2017 ◽  
Vol 293 ◽  
pp. 44-53 ◽  
Author(s):  
Carsten W. Mueller ◽  
Carmen Hoeschen ◽  
Markus Steffens ◽  
Henning Buddenbaum ◽  
Kenneth Hinkel ◽  
...  
SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 147-171 ◽  
Author(s):  
C. L. Ping ◽  
J. D. Jastrow ◽  
M. T. Jorgenson ◽  
G. J. Michaelson ◽  
Y. L. Shur

Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.


2014 ◽  
Vol 1 (1) ◽  
pp. 709-756 ◽  
Author(s):  
C. L. Ping ◽  
J. D. Jastrow ◽  
M. T. Jorgenson ◽  
G. J. Michaelson ◽  
Y. L. Shur

Abstract. Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.


2015 ◽  
Vol 21 (9) ◽  
pp. 3200-3209 ◽  
Author(s):  
Michael J. Castellano ◽  
Kevin E. Mueller ◽  
Daniel C. Olk ◽  
John E. Sawyer ◽  
Johan Six

2018 ◽  
Vol 123 (3) ◽  
pp. 1005-1016 ◽  
Author(s):  
Yinghui Wang ◽  
Yunping Xu ◽  
Robert G. M. Spencer ◽  
Phoebe Zito ◽  
Anne Kellerman ◽  
...  

2021 ◽  
Author(s):  
Edgar Galicia-Andrés ◽  
Yerko Escalona ◽  
Peter Grančič ◽  
Chris Oostenbrink ◽  
Daniel Tunega ◽  
...  

<p>It is well known that some fractions of soil organic matter (SOM) can resist to physical and (bio)chemical degradation which can be attributed to factors ranging from molecular properties to the preference for digesting other molecular species by microorganisms. Some mechanisms, by which organic matter is protected, are often referred to as: physical stabilization through microaggregation, chemical stabilization by formation of SOM-mineral aggregates, and biochemical stabilization through the formation of recalcitrant SOM.</p><p>Protection mechanisms are responsible for the accumulation process of organic carbon, reducing the exposure of organic matter and making it less vulnerable to microbial, enzymatic or chemical attacks. In these mechanisms, water molecular bridges and metal cation bridges play a key role. Cation bridges serve as aggregation sites on humic substances, forming dense matter, in comparison to systems where bridges are missing. This effect is enhanced in systems with cations at higher oxidation states.</p><p>By using the modeler tool developed in our group (Vienna Soil–Organic–Matter Modeler, VSOMM2) (Escalona et al., 2021), we generated aggregate models of humic substances at atomistic scale reflecting the diversity in composition, size and conformations of the constituting molecules. Further, we built models of organo-clay aggregates using kaolinite and montmorillonite as typical soil minerals. This allowed a systematic study to understand the effect of the surrounding environment at microscopic scale, not fully accessible experimentally.</p><p>Molecular simulations of the adsorption process of SOM aggregates on the reactive surfaces of led to two observations: 1) the humic substances aggregates were able to interact with the reactive surfaces mainly via hydrogen bonds forming stable organic matter-clay complexes and 2) the aggregates subsequently lost rigidity and stability after metal cations removing, consequently leading to a gradual loss of humic substance molecules, evidencing the role of metal cations in the protection mechanism of soil organic matter aggregates and possibly explaining its recalcitrance (Galicia-Andrés et al., 2021).</p><p>References</p><ul><li>Escalona, Y., Petrov, D., & Oostenbrink, C. (2021). Vienna soil organic matter modeler 2 (VSOMM2). Journal of Molecular Graphics and Modelling, 103, 107817. https://doi.org/10.1016/j.jmgm.2020.107817</li> <li>Galicia-Andrés, E., Grančič, P., Gerzabek, M. H., Oostenbrink, C., & Tunega, D. (2021). Modeling of interactions in natural and synthetic organoclays. In I. C. Sainz Diaz (Ed.), Computational modeling in clay mineralogy.</li> </ul>


2021 ◽  
Author(s):  
Alexander Prechtel ◽  
Simon Zech ◽  
Alice Lieu ◽  
Raphael Schulz ◽  
Nadja Ray

<div class="description js-mathjax"> <p>Key functions of soils, such as permeability or habitat for microorganisms, are determined by structures at the microaggregate scale. The evolution of elemental distributions and dynamic processes can often not be assessed experimentally. So mechanistic models operating at the pore scale are needed.<br />We consider the complex coupling of biological, chemical, and physical processes in a hybrid discrete-continuum modeling approach. It integrates dynamic wetting (liquid) and non-wetting (gas) phases including biofilms, diffusive processes for solutes, mobile bacteria transforming into immobile biomass, and ions which are prescribed by means of partial differential equations. Furthermore the growth of biofilms as, e.g., mucilage exuded by roots, or the distribution of particulate organic matter in the system, is incorporated in a cellular automaton framework (CAM) presented in [1, 2]. It also allows for structural changes of the porous medium itself (see, e.g. [3]). As the evolving computational domain leads to discrete discontinuities, we apply the local discontinuous Galerkin (LDG) method for the transport part. Mathematical upscaling techniques incorporate the information from the pore to the macroscale [1,4].<br />The model is applied for two research questions: We model the incorporation and turnover of particulate OM influencing soil aggregation, including ‘gluing’ hotspots, and show scenarios varying of OM input, turnover, or particle size distribution. <br />Second, we quantify the effective diffusivity on 3D geometries from CT scans of a loamy and a sandy soil. Conventional models cannot account for natural pore geometries and varying phase properties. Upscaling allows also to quantify how root exudates (mucilage) can significantly alter the macroscopic soil hydraulic properties.</p> </div> <div id="field-23"> <p>[1]  Ray, Rupp, Prechtel (2017). AWR (107), 393-404.<br />[2] Rupp, Totsche, Prechtel, Ray (2018). Front. Env. Sci. (6) 96.<br />[3] Zech, Dultz, Guggenberger, Prechtel, Ray (2020). Appl. Clay Sci. 198, 105845.<br />[4] Ray, Rupp, Schulz, Knabner (2018). TPM 124(3), 803-824.</p> </div>


Sign in / Sign up

Export Citation Format

Share Document